✨Định lý toán học

Định lý toán học

phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một định lý là một mệnh đề phi hiển nhiên đã được chứng minh là đúng, hoặc trên cơ sở dẫn xuất từ các tiên đề hoặc được chứng minh trên cơ sở lấy từ các định lý khác. Do đó, một định lý là hệ quả logic của các tiên đề, với một chứng minh của định lý là một đối số logic thiết lập chân lý của nó thông qua các quy tắc suy luận của một hệ thống suy diễn. Kết quả là, việc chứng minh một định lý thường được hiểu là sự biện minh cho chân lý của phát biểu định lý. Trong bối cảnh yêu cầu các định lý phải được chứng minh, khái niệm của một định lý về cơ bản là suy luận, trái ngược với khái niệm của một định luật khoa học là thực nghiệm.

Nhiều định lý toán học là các tuyên bố có điều kiện, có chứng minh suy ra kết luận từ điều kiện được gọi là giả thiết. Dưới góc độ của việc giải thích bằng chứng là sự biện minh của chân lý, kết luận thường được xem như một hệ quả cần thiết của các giả thuyết. Cụ thể, kết luận đó là đúng trong trường hợp các giả thuyết là đúng - mà không cần thêm bất kỳ giả thiết nào. Tuy nhiên, điều kiện cũng có thể được giải thích khác nhau trong một số hệ thống suy diễn nhất định, tùy thuộc vào ý nghĩa được gán cho các quy tắc dẫn xuất và ký hiệu điều kiện (ví dụ, logic không cổ điển).

Mặc dù các định lý có thể được viết dưới dạng ký hiệu hoàn toàn (ví dụ như mệnh đề trong số học), chúng thường được diễn đạt không chính thức bằng ngôn ngữ tự nhiên để dễ đọc hơn. Điều này cũng đúng với các chứng minh, thường được diễn đạt dưới dạng các lập luận bình dân được tổ chức một cách logic và rõ ràng, nhằm thuyết phục người đọc về sự thật của độ đúng đắn của định lý không còn nghi ngờ gì nữa, và từ đó về nguyên tắc có thể xây dựng một chứng minh tượng trưng chính thức.

Ngoài việc dễ đọc hơn, các đối số không chính thức thường dễ kiểm tra hơn các đối số thuần túy tượng trưng — thực tế nhiều nhà toán học sẽ bày tỏ sự ưa thích đối với một phép chứng minh không chỉ chứng minh tính hợp lệ của một định lý mà còn giải thích theo một cách nào đó tại sao nó hiển nhiên đúng. Trong một số trường hợp, người ta thậm chí có thể chứng minh một định lý bằng cách sử dụng một hình vẽ minh họa phép chứng minh của nó.

Bởi vì các định lý là cốt lõi của toán học, chúng cũng là trung tâm của tính thẩm mỹ của nó. Các định lý thường được mô tả là "tầm thường", "khó", hoặc "sâu", hoặc thậm chí "đẹp". Những nhận định chủ quan này không chỉ khác nhau ở mỗi người, mà còn theo thời gian và nền văn hóa: ví dụ, khi một phép chứng minh mới được tìm ra, đơn giản hóa hoặc hiểu rõ hơn, một định lý từng được coi là khó có thể trở nên tầm thường. Mặt khác, một định lý được coi là sâu có thể được phát biểu một cách đơn giản, nhưng cách chứng minh của nó có thể liên quan đến những mối liên hệ đáng ngạc nhiên và tinh tế giữa các lĩnh vực toán học khác nhau. Định lý cuối cùng của Fermat là một ví dụ đặc biệt nổi tiếng về một định lý như vậy.

Kết cấu

Về mặt logic, nhiều định lý có dạng một điều kiện chỉ định: Nếu A, thì B. Một định lý như vậy không khẳng định B - chỉ nói rằng B là hệ quả cần thiết của A. Trong trường hợp này, A được gọi là giả thiết của định lý ("giả thuyết" ở đây có nghĩa là một cái gì đó rất khác với một phỏng đoán), và Bkết luận của định lý. Cả hai phần này đặt cạnh nhau (không cần chứng minh) được gọi là mệnh đề hoặc phát biểu của định lý (ví dụ "Nếu A, thì B" là mệnh đề). Ngoài ra, AB cũng có thể được gọi là tiền đềhậu quả. Định lý "Nếu n là số tự nhiên chẵn thì n/2 là số tự nhiên" là một ví dụ điển hình trong đó giả thuyết là "n là số tự nhiên chẵn", và kết luận là "n/2 cũng là số tự nhiên".

Để một định lý được chứng minh, về nguyên tắc nó phải có thể diễn đạt được như một phát biểu chính xác về mặt hình thức. Tuy nhiên, các định lý thường được diễn đạt bằng ngôn ngữ tự nhiên chứ không phải ở dạng ký hiệu hoàn toàn - với giả định rằng một tuyên bố hình thức của định lý có thể được rút ra từ một tuyên bố phi hình thức.

Trong toán học, người ta thường chọn một số giả thuyết trong một ngôn ngữ nhất định và tuyên bố rằng lý thuyết bao gồm tất cả các phát biểu có thể chứng minh được từ các giả thuyết này. Những giả thuyết này tạo thành cơ sở nền tảng của lý thuyết và được gọi là tiên đề hay định đề. Lĩnh vực toán học được gọi là lý thuyết chứng minh nghiên cứu các ngôn ngữ hình thức, tiên đề và cấu trúc của phép chứng minh. phải|khung|Một [[Mặt phẳng (toán học)|bản đồ phẳng có năm màu sao cho không có hai vùng có cùng màu gặp nhau. Nó thực sự có thể được tô màu theo cách này chỉ với bốn màu. Định lý bốn màu nói rằng việc tô màu như vậy có thể sử dụng được cho bất kỳ bản đồ phẳng nào, nhưng mọi chứng minh đã biết đều liên quan đến một tìm kiếm tính toán quá lâu để có thể kiểm tra bằng tay.]] Một số định lý là "tầm thường", theo nghĩa là chúng tuân theo các định nghĩa, tiên đề và các định lý khác theo những cách hiển nhiên và không chứa đựng bất kỳ hiểu biết đáng ngạc nhiên nào. Mặt khác, một số định lý có thể được gọi là "sâu", bởi vì các chứng minh của chúng có thể dài và khó, liên quan đến các lĩnh vực toán học khác không liên quan với tuyên bố của chính định lý, hoặc cho thấy các mối liên hệ đáng ngạc nhiên giữa các lĩnh vực toán học khác nhau. Một định lý có thể được phát biểu rất đơn giản nhưng rất sâu sắc. Một ví dụ tuyệt vời cho việc này là Định lý cuối cùng của Fermat, và có nhiều ví dụ khác về các định lý đơn giản nhưng sâu sắc trong lý thuyết số và tổ hợp, và các lĩnh vực khác.

Các định lý khác có chứng minh đã biết mà không thể dễ dàng viết ra. Các ví dụ nổi bật nhất cho việc này là định lý bốn màu và giả thuyết Kepler. Cả hai định lý này chỉ được biết là đúng bằng cách rút gọn chúng thành một tìm kiếm tính toán sau đó được một chương trình máy tính xác minh. Ban đầu, nhiều nhà toán học không chấp nhận hình thức chứng minh này, nhưng bây giờ nó đã được chấp nhận rộng rãi hơn. Nhà toán học Doron Zeilberger thậm chí đã đi xa đến mức tuyên bố rằng đây có thể là những kết quả tầm thường duy nhất mà các nhà toán học đã từng chứng minh. Nhiều định lý toán học có thể được rút gọn thành tính toán đơn giản hơn, bao gồm các nhận dạng đa thức, nhận dạng lượng giác và các nhận dạng siêu hình học.

Phân loại

Định lý toán học có thể phân loại theo nhiều tiêu chí khác nhau: theo lĩnh vực (số học, đại số, hình học...), theo mối quan hệ với các định lý khác (định lý thuận, đảo, phản, phản đảo)

Các định lý toán học nổi tiếng

  • Định lý lớn Fermat
  • Định lý nhỏ Fermat
  • Định lý Viète
  • Định lý Brouwer
  • Định lý Pytago
  • Định lý Thales
  • Định lý bất toàn
  • Định lý Thales
👁️ 2 | 🔗 | 💖 | ✨ | 🌍 | ⌚
phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một **định lý** là một mệnh đề phi hiển nhiên đã được chứng minh là
Trong toán học, **định lý khai triển nhị thức** (ngắn gọn là **định lý nhị thức**) là một định lý toán học về việc khai triển hàm mũ của tổng. Cụ thể, kết quả của
nhỏ|Ví dụ về Định lý Euclid-Euler **Định lý Euclid–Euler** là một định lý trong lý thuyết số liên hệ số hoàn thiện với số nguyên tố Mersenne. Định lý này phát biểu rằng một số
Trong hình học đại số, **định lý Bézout**, hay **định lý Bezout**, là định lý toán học, được phát hiện năm 1770 từ nhà toán học Pháp Étienne Bézout (1730-1783), về số giao điểm của
**Định lý Bézout về số dư của phép chia đa thức** (hay **Định lý nhỏ Bézout**, phiên âm tiếng Pháp là **Bêzu**), được đặt theo tên của nhà toán học người Pháp Étienne Bézout. Định
thumb|Trong hình vẽ cho chín điểm, một trường hợp đặc biệt, khi cả hai đường bậc ba và suy biến thành ba đường thằng **Định lý Cayley–Bacharach** là một định lý toán học nói về
**Định lý Apéry** là một định lý toán học mang tên nhà toán học người Pháp Roger Apéry (1916 - 1994) chứng minh ra nó vào năm 1978. ## Phát biểu _Giá trị của hàm
thumb|right|Các giải pháp của [[phương trình Schrödinger trong cơ học lượng tử cho Dao động tử điều hòa, cùng với các biên độ bên phải. Đây là một ví dụ của toán lý.]] **Vật lý
Trong giải tích phức, **định lý de Branges** là một định lý toán học mô tả các điều kiện cần để một hàm là một ánh xạ đơn ánh từ đĩa đơn vị lên mặt
|Minh họa hình học về định lý đường trung tuyến: Lục + Lam = Đỏ **Định lý Apollonius** là định lý hình học phẳng nói về mối quan hệ giữa độ dài đường trung tuyến
**_Philosophiæ Naturalis Principia Mathematica_** (tiếng Latinh nghĩa là _Các nguyên lý toán học của triết học tự nhiên_), thường gọi ngắn gọn là **_Principia_**, là tác phẩm gồm 3 tập sách do Sir Isaac Newton
Toán học không có định nghĩa được chấp nhận chung. Các trường phái tư tưởng khác nhau, đặc biệt là trong triết học, đã đưa ra các định nghĩa hoàn toàn khác nhau. Tất cả
**Định lý Brouwer** được phát biểu năm 1912 bởi nhà luận lý học Hà Lan Luizen Egbertus Jan Brouwer và còn có tên là **Nguyên lý điểm bất động Brouwer**. Đây là một trong những
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
phải|Bài toán II.8 trong _Arithmetica_ của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670) **Định lý cuối cùng của Fermat** (hay còn gọi là
**Các định lý bất toàn của Gödel**, hay gọi chính xác là **Các định lý về tính bất hoàn chỉnh của Gödel** (tiếng Anh: **Gödel's incompleteness theorems**, tiếng Đức: **Gödelscher Unvollständigkeitssatz**), là hai định lý
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
Sự phát triển của Toán học cả về mặt tổng thể lẫn các bài toán riêng lẻ là một chủ đề được bàn luận rộng rãi - nhiều dự đoán trong quá khứ về toán
phải|nhỏ|Ví dụ về bản đồ bốn màu **Định lý bốn màu** (còn gọi là _định lý bản đồ bốn màu_) phát biểu rằng đối với bất kỳ mặt phẳng nào được chia thành các vùng
Trong toán học, một **chứng minh** là một cách trình bày thuyết phục (sử dụng những chuẩn mực đã được chấp nhận trong lĩnh vực đó) rằng một phát biểu toán học là đúng đắn.
thumb|Hình mình họa cho chứng minh của Euclid về định lý Pythagoras. **Toán học Hy Lạp** là nền toán học được viết bằng tiếng Hy Lạp, phát triển từ thế kỷ 7 TCN đến thế
**Định lý Thales**, hay **định lý Thalès**, **định lý Talet**, là một định lý quan trọng trong hình học sơ cấp, được đặt theo tên nhà toán học người Hy Lạp Thales. Mặc dù định
nhỏ|phải|Một tam giác với các thành phần trong định lý sin Trong lượng giác, **định lý sin** (hay **định luật sin**, **công thức sin**) là một phương trình biểu diễn mối quan hệ giữa chiều
nhỏ Trong Toán học và khoa học máy tính lý thuyết, **định lý Church-Rosser** phát biểu: khi áp dụng các quy tắc rút gọn cho các số hạng trong một số biến thể được gõ
Trong toán học, **định lý cơ bản của đại số** khẳng định rằng mọi đa thức một biến khác hằng số với hệ số phức có ít nhất một nghiệm phức. Điều đó tương đương
Trong Lý thuyết thông tin, **Định lý mã hóa trên kênh nhiễu** (_tiếng Anh: noisy-channel coding theorem_) đề xuất rằng, cho dù một kênh truyền thông có bị ô nhiễm bởi nhiễu âm bao nhiêu
[[Tập tin:Ptolemy equality.svg|right|thumb|upright=1.25|Định lý Ptoleme thể hiện mối quan hệ của độ dài các cạnh - đường chéo của một tứ giác nội tiếp đường tròn.\definecolor{V}{RGB}{148,0,211} \definecolor{B}{RGB}{0,0,255} \definecolor{R}{RGB}{204,0,0} {\color{V}AC}\cdot{\color{V}BD}={\color{B}AB}\cdot{\color{B}CD}+{\color{R}BC}\cdot{\color{R}AD}]] **Định lý Ptoleme** hay **đẳng thức
Trong hình học, **định lý Radon** về các tập hợp lồi, đặt tên theo Johann Radon, khẳng định rằng mọi tập hợp gồm _d_ + 2 điểm trong **R**_d_ đều có thể chia thành hai tập hợp
**Định lý năm màu** (còn gọi là _định lý bản đồ năm màu_): Mọi đồ thị phẳng (G) đều có số màu \gamma(G) \le 5 \,. Là một kết quả từ Lý thuyết đồ
**Định lý Gelfond-Schneider** mang tên của nhà toán học người Nga Alexander Osipovich Gelfond (1906-1968) và của nhà toán học Theodor Schneider (1911-1988), hai người cùng độc lập chứng minh trong lý thuyết số định
Trong toán học, **định lý Hahn–Banach** là một công cụ trung tâm của giải tích hàm. Nó cho phép mở rộng của các phiếm hàm tuyến tính bị chặn định nghĩa trên một không gian
thumb|Hướng sắp xếp ban đầu của Hàn Tín: **Định lý số dư Trung Hoa (Định lý thặng dư Trung Hoa)**, hay **bài toán Hàn Tín điểm binh**, là một định lý nói về nghiệm của
**Định lý Ceva** là một định lý phổ biến trong hình học cơ bản. Cho một tam giác _ABC_, các điểm _D_, _E_, và _F_ lần lượt nằm trên các đường thẳng _BC_, _CA_, và
**Định lý bất biến miền **(Invariance of domain) còn có tên gọi là **Định lý Brouwer về tính bất biến của miền** (domain), được chứng minh bởi nhà toán học Luitzen Egbertus Jan Brouwer (1881-1966)
Minh họa định lý Stewart. Trong hình học Euclid, **định lý Stewart** là đẳng thức miêu tả mối quan hệ độ dài giữa các cạnh trong tam giác với đoạn thẳng nối một đỉnh với
Trong giải tích, định lý Taylor cho ta một đa thức xấp xỉ một hàm khả vi tại một điểm cho trước (gọi là đa thức Taylor của hàm đó) có hệ số chỉ phụ
thumb|right|Định lý Thebault I **Định lý Thébault** là một trong bốn định lý hình học phẳng được đề xuất bởi nhà toán học người Pháp Victor Thébault (1882–1960) đăng trên tạp chí toán học hàng
Trong hình học phẳng, **định lý Casey**, được biết đến như một mở rộng định lý Ptoleme, được đặt theo tên nhà toán học người Ai Len John Casey. ## Nội dung của định lý
Trong toán học dân gian,"**định lý không có bữa trưa miễn phí**"của David Wolpert và William G. Macready xuất hiện năm 1997 trong bài báo"Tối ưu các định lý không có bữa trưa miễn phí"(No
**Định lý giá trị trung gian**, còn có tên là **định lý Bolzano** (đặt theo tên nhà toán học Tiệp Khắc Bernhard Bolzano (1781-1848)). là định lý cơ bản trong giải tích, liên quan đến
**Định lý Fermat về số đa giác đều** (tiếng Anh: _Fermat polygonal number theorem_) khẳng định rằng: mỗi số tự nhiên đều có thể biểu diễn thành tổng của không quá _n_ số _n_ giác
nhỏ|Định lý Morley Trong hình học phẳng, **định lý Morley về góc chia ba** được phát biểu như sau: Các giao điểm của các đường phân ba góc kề nhau lập thành một tam giác
right|thumb|upright=1.5|Định lý Routh Trong hình học phẳng, **Định lý Routh** nói về tỉ lệ diện tích tam giác tạo bởi ba đường thẳng cevian và tam giác ban đầu. Định lý này phát biểu rẳng
**Định lý Taniyama–Shimura** là một định lý xây dựng một mối liên hệ quan trọng giữa các đường cong elip, một khái niệm trong hình học đại số và các dạng modular, là các hàm
Định lý này được mang tên của hai nhà toán học người Ý Cesare Arzelà (1847-1912) và Giulio Ascoli, (1843–1896). Định lý nêu ra một tiêu chuẩn để xác định khi nào một tập các
**Định lý Gauss**, hay còn gọi là **định lý phân kỳ**, hay **định lý Ostrogradsky**, hay **định lý Gauss-Ostrogradsky** (do hai nhà toán học người Đức Carl Friedrich Gauß và người Nga Mikhail Vasilyevich Ostrogradsky
Trong lý thuyết độ phức tạp tính toán, các **định lý cấp bậc thời gian** là các mệnh đề quan trọng về tính toán trong thời gian giới hạn trên máy Turing. Nói một cách
phải||Hình 1 – Một tam giác với các góc _α_ (hoặc _A_), _β_ (hoặc _B_), _γ_ (hoặc _C_) lần lượt đối diện với các cạnh _a_, _b_, _c_. Trong lượng giác, **Định lý cos** (hay
Trong lĩnh vực hình học phẳng, **định lý Carnot** đặt tên theo Lazare Carnot (1753–1823). Có 4 định lý được đặt tên là **định lý Carnot**. Định lý thứ nhất nói về tổng khoảng cách