Trong hình học đại số, định lý Bézout, hay định lý Bezout, là định lý toán học, được phát hiện năm 1770 từ nhà toán học Pháp Étienne Bézout (1730-1783), về số giao điểm của các đường cong trên cùng mặt phẳng. Đây là một trong những định lý lâu đời nhất trong hình học đại số.
Phát biểu
"Cho hai đường cong phẳng đại số có bậc m và n đồng thời không có thành phần chung nào, thì có đúng m nhân n điểm giao nhau. Trong đó, kể cả các giao điểm trùng nhau và các giao nhau số 8 nằm ngang (ngoài ra còn có nhiều định lý khác liên quan đến đại số)
Ví dụ
*Trong hình học phẳng thì định lý này có thể minh hoạ thu hẹp thành:
Đường cong bậc hai tổng quát sẽ cắt đường thẳng (bậc 1) tối đa ở hai giao điểm. Đặc biệt, trường hợp đường cong bậc hai là parabol thì có thể có giao điểm ở vô cực. Trường hợp đường thẳng là tiếp tuyến thì hai giao điểm này trùng nhau đó là tiếp điểm chung duy nhất..
Tương tự, hai đường cong bậc hai trong cùng mặt phẳng sẽ có tối đa với nhau 2 x 2 = 4 giao điểm và các giao điểm này có thể ở vô cực hay chúng trùng nhau tạo thành các tiếp điểm.
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong hình học đại số, **định lý Bézout**, hay **định lý Bezout**, là định lý toán học, được phát hiện năm 1770 từ nhà toán học Pháp Étienne Bézout (1730-1783), về số giao điểm của
**Định lý Bézout về số dư của phép chia đa thức** (hay **Định lý nhỏ Bézout**, phiên âm tiếng Pháp là **Bêzu**), được đặt theo tên của nhà toán học người Pháp Étienne Bézout. Định
thumb|Chân dung [[François Viète]] Trong toán học, **định lý Viète** hay **hệ thức Viète** (tiếng Pháp: _Relations de Viète_) do nhà toán học Pháp François Viète tìm ra, nêu lên mối quan hệ giữa các
**Étienne Bézout** (1730-1783) là nhà toán học người Pháp. Năm 1763, Bézout bắt đầu dạy toán trong quân đội Pháp. Năm 1758, ông trở thành viện sĩ của Viện Hàn lâm Khoa học Paris. Công
Trong lý thuyết số cơ bản, **bổ đề Bézout** được phát biểu thành định lý sau: Nếu là ước chung lớn nhất của hai số nguyên không âm và thì:
thumb|right|[[Đường cong Tschirnhausen là một ví dụ về đường cong đại số bậc ba.]] Trong toán học, **đường cong phẳng đại số affin** là tập nghiệm của đa thức hai biến. **đường cong phẳng đại
thumb|[[Căn đơn vị thứ 5 trong mặt phẳng tạo thành một nhóm dưới phép nhân. Mỗi phần tử không đơn vị đều là phần tử sinh của nhóm.]] Trong đại số trừu tượng, **tập sinh
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
thumb|Thuật toán Euclid để tìm ước chung lớn nhất (ƯCLN) của hai đoạn thẳng BA và DC, độ dài của cả hai đều là bội của một "đơn vị" độ dài chung. Vì độ dài
thumb|right|Chiếc đồng hồ với mô đun bằng 12 Trong toán học, **số học mô đun** là một hệ thống số học dành cho số nguyên. Trong số học mô đun, các con số được viết
Trong toán học, các số nguyên _a_ và _b_ được gọi là **nguyên tố cùng nhau** (tiếng Anh: **coprime** hoặc **relatively prime**) nếu chúng có Ước số chung lớn nhất là 1. Ví dụ 5
Trong toán học, **ước số chung lớn nhất** (**ƯCLN**) hay **ước chung lớn nhất** (**ƯCLN**) của hai hay nhiều số nguyên là số nguyên dương lớn nhất là ước số chung của các số đó.
right|thumb|Một số đường cong bậc 3. Nhấn vào ảnh để xem rõ hơn Trong toán học, **đường cong bậc 3** là đường cong đại số định nghĩa bởi hàm số bậc ba : áp dụng
Trong lý thuyết số, **bổ đề Euclid** là một bổ đề nắm một thuộc tính cơ bản của số nguyên tố, đó là:
**Bổ đề Euclid** — Nếu một số nguyên tố là ước của tích
thumb|Việc tìm tất cả các [[bộ ba số Pythagoras|tam giác vuông có cạnh nguyên tương đương với việc giải phương trình Diophantos .]] Trong toán học, **phương trình Diophantos** là phương trình đa thức, thường
Trong toán học, **bổ đề** là một giả thuyết đã được chứng minh hoặc chắc chắn sẽ được chứng minh dùng làm nền tảng để từ đó các nhà toán học tiếp tục nghiên cứu
nhỏ|Chiếc bánh pizza được cắt nhỏ; mỗi miếng bánh là chiếc bánh. **Phân số đơn vị** là phân số dương có tử số bằng 1, tức có dạng với là
Ngày **31 tháng 3** là ngày thứ 90 (91 trong năm nhuận) trong lịch Gregory. Còn 275 ngày trong năm. ## Sự kiện ### Trong nước * 1028 – Loạn Tam vương (Vũ Đức Vương,
Ngày **27 tháng 9** là ngày thứ 270 (271 trong năm nhuận) trong lịch Gregory. Còn 95 ngày trong năm. ## Sự kiện *548 – Hầu Cảnh phát binh làm phản triều Lương tại Thọ