Định lý Taniyama–Shimura là một định lý xây dựng một mối liên hệ quan trọng giữa các đường cong elip, một khái niệm trong hình học đại số và các dạng modular, là các hàm holomorphic tuần hoàn được miêu tả trong lý thuyết số. Định lý này bắt nguồn từ giả thuyết Taniyama-Shimura, còn phần chứng minh được Andrew Wiles, Christophe Breuil, Brian Conrad, Fred Diamond và Richard Taylor hoàn chỉnh. Việc Andrew Wiles hoàn tất chứng minh định lý Taniyama-Shimura trực tiếp dẫn đến chứng minh định lý lớn Fermat nổi tiếng của Pierre de Fermat.
Nếu p là một số nguyên tố và E là một đường cong elip trên tập Q, tập số hữu tỉ, ta có thể rút gọn phương trình xác định E modulo p với mọi giá trị của p. Nhưng nếu với giá trị của p hữu hạn, ta có thể tìm được một đường cong elip trên trường hữu hạn với phần tử. Khi đó dãy:
:
là một bất biến quan trọng của đường cong elip E.
Mọi dạng modular đều phát triển thành một dãy số bằng biến đổi Fourier. Một đường cong elip có dãy số thích hợp với một dạng modular thì được gọi là modular. Định lý Taniyama–Shimura phát biểu như sau:
:Mọi đường cong elip trên tập Q đều là modular
👁️
0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Định lý Taniyama–Shimura** là một định lý xây dựng một mối liên hệ quan trọng giữa các đường cong elip, một khái niệm trong hình học đại số và các dạng modular, là các hàm
**Định lý của Ribet** (hay **Phỏng đoán Epsilon - Phỏng đoán ε**, tiếng Anh: **Ribet's theorem**) là một phần của lý thuyết số. Nó đề cập tới đến các thuộc tính của các biểu diễn
phải|Bài toán II.8 trong _Arithmetica_ của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670) **Định lý cuối cùng của Fermat** (hay còn gọi là
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
right|thumb|Một ví dụ về "vẻ đẹp trong toán học" - một chứng minh đơn giản và thanh lịch về [[Định lý Pythagore.]] **Vẻ đẹp của Toán học** mô tả quan niệm rằng một số nhà
**Andrew John Wiles** là nhà toán học người Anh, được biết đến như người đầu tiên chứng minh được định lý lớn Fermat. Wiles được giới thiệu về định lý lớn Fermat ngay lúc ông
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *