✨Định lý lớn Fermat

Định lý lớn Fermat

phải|Bài toán II.8 trong Arithmetica của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670) Định lý cuối cùng của Fermat (hay còn gọi là định lý Fermat lớn) là một trong những định lý nổi tiếng trong lịch sử toán học. Định lý này phát biểu như sau:

:_Không tồn tại các nghiệm nguyên dương a, b, c thoả mãn an + bn = cn trong đó n là một số nguyên lớn hơn 2_.

Định lý này đã làm khó không biết bao bộ óc vĩ đại của các nhà toán học lừng danh trong gần 4 thế kỉ. Cuối cùng nó được Andrew Wiles chứng minh vào năm 1993 sau gần 8 năm ròng nghiên cứu, phát triển từ chứng minh các giả thiết có liên quan. Tuy nhiên chứng minh này còn thiếu sót và đến năm 1995 Wiles mới hoàn tất, công bố chứng minh trọn vẹn sau 358 năm nỗ lực chứng minh của các nhà toán học. Bằng chứng được mô tả là một 'bước tiến tuyệt vời' trong trích dẫn cho giải thưởng Abel năm 2016. Bằng chứng của Định lý cuối cùng của Fermat cũng đã chứng minh được rất nhiều định lý module và mở ra toàn bộ các phương pháp tiếp cận mới cho nhiều vấn đề khác và nâng tầm kỹ thuật tính toán module. Những vấn đề chưa được giải quyết đã thúc đẩy sự phát triển của lý thuyết đại số ở thế kỉ 19 và sự chứng minh của định lý Module ở thế kỉ 20. Đây là định lý trứ danh nhất trong lịch sử toán học. Trước khi nó được chứng minh thì định lý đã được ghi vào sách kỷ lục Guinness thế giới như là một vấn đề toán học khó nhất mọi thời đại, một trong những lý do định lý này được gọi như vậy là vì có một lượng khổng lồ các bài chứng minh không thành công.

Tổng quan về định lý

Nguồn gốc của định lý Pythagoras

Phương trình Pythagoras, x2 + y2 = z2, có vô số các số nguyên dương cho x, y, z thỏa mãn; các nghiệm này được gọi là bộ ba số Pythagoras. Vào khoảng năm 1637, Fermat đã viết trong một quyển sách rằng phương trình tổng quát hơn là an + bn = cn, không có nghiệm nào là số nguyên dương, nếu n là số nguyên lớn hơn 2. Mặc dù ông tuyên bố có cách chứng minh chung về giả thuyết của ông, Fermat đã không để lại chi tiết về chứng minh của mình, và không có bất kỳ chứng minh nào của ông đã từng được tìm thấy. Khẳng định của ông đã được phát hiện khoảng 30 năm sau cái chết của ông. Tuyên bố này, được gọi là Định lý cuối cùng của Fermat, đã tồn tại trong toán gần 3,5 thế kỷ. Tuyên bố cuối cùng của Fermat đã trở thành một trong những vấn đề nổi bật nhất chưa được giải quyết của toán học. Những nỗ lực để chứng minh nó đã thúc đẩy sự phát triển đáng kể trong lý thuyết số, và theo thời gian Định lý cuối cùng của Fermat đã nổi bật như là một vấn đề chưa được giải quyết trong toán học.

Sự phát triển và những nghiệm sau đó

Với trường hợp đặc biệt n = 4 do chính Fermat chứng minh, điều này đã giảm thiểu việc chứng minh bằng cách chỉ cần chứng minh định lý này cho các số mũ là số nguyên tố (sự thu nhỏ chứng minh này được coi là bình thường để chứng minh). Trong hai thế kỷ tiếp theo (1637-1839), phỏng đoán đã được chứng minh chỉ với các số nguyên tố 3, 5 và 7, mặc dù Sophie Germain đã đổi mới và chứng minh một cách tiếp cận có liên quan đến toàn bộ bậc của số nguyên tố. Vào giữa thế kỷ 19, Ernst Kummer đã mở rộng điều này và chứng minh được định lý cho tất cả các số nguyên tố thông thường, để lại các số nguyên tố bất thường được phân tích riêng lẻ. Dựa trên công trình của Kummer và sử dụng các nghiên cứu máy tính phức tạp, các nhà toán học khác có thể mở rộng cách chứng minh để bao gồm tất cả các số nguyên tố chính lên đến bốn triệu, nhưng một bằng chứng cho thấy tất cả các số mũ là không thể tiếp cận được (có nghĩa là các nhà toán học thường xem là một bằng chứng không thể, nó quá khó, không thể chứng minh được với kiến ​​thức hiện tại).

Hoàn toàn tách biệt, khoảng năm 1955, các nhà toán học người Nhật Goro Shimura và Yutaka Taniyama nghi ngờ một liên kết có thể tồn tại giữa các đường cong elliptic và dạng modular, hai lĩnh vực toán học hoàn toàn khác nhau. Được biết đến vào thời điểm đó là giả thuyết Taniyama-Shimura, và (cuối cùng) là định lý modular, nó tự đứng vững, không có kết nối rõ ràng với Định lý cuối cùng của Fermat. Nó được xem là quan trọng, nhưng nó (như định lý của Fermat) được xem là không thể chứng minh được.

Năm 1984, Gerhard Frey nhận thấy một liên kết rõ ràng giữa hai vấn đề không liên quan và chưa được giải quyết trước đây. Một phác thảo cho thấy điều này có thể được chứng minh đã được đưa ra bởi Frey. Bằng chứng đầy đủ cho thấy hai vấn đề này có liên quan mật thiết với nhau, được xây dựng bởi Ken Ribet vào năm 1986 dựa trên cách chứng minh từng phần của Jean-Pierre Serre, người đã chứng minh được tất cả nhưng chỉ một phần được gọi là "dự đoán epsilon" (xem định lý của Ribet và đường Frey). Các giấy tờ của Frey, Serre và Ribet chỉ ra rằng nếu Định lý mô đun có thể được chứng minh cho ít nhất là bán ổn định lớp đường cong elliptic, thì một cách chứng minh của Định lý cuối cùng của Fermat cũng sẽ tự động được thực hiện. Kết nối được mô tả dưới đây: bất kỳ nghiệm nào có thể trái ngược với Định lý cuối cùng của Fermat cũng có thể được sử dụng để đảo lại với Định lý mô đun. Vì vậy, nếu định lý Mô-đun đã được tìm thấy là đúng, thì theo định nghĩa không có cách giải nào đảo với Định lý cuối cùng của Fermat có thể tồn tại, điều này cũng phải là đúng.

Mặc dù cả hai vấn đề này đều là những vấn đề khó khăn được xem là "hoàn toàn không thể tiếp cận" được vào thời điểm đó, Tuy nhiên, ý kiến ​​chung cho rằng điều này chỉ đơn giản cho thấy cái không thực tế của chứng minh Taniyama-Shimura phỏng đoán. Phản hồi được trích dẫn từ nhà toán học John Coates: Nhờ chứng minh của mình, Wiles được vinh danh và nhận được nhiều giải thưởng, bao gồm giải thưởng Abel năm 2016.

Các phát biểu tương đương của định lý

Có một số cách khác để tuyên bố định lý cuối cùng của Fermat có toán học tương đương với câu lệnh ban đầu của vấn đề.

Để biểu diễn chúng, chúng ta sử dụng ký hiệu toán học: để N là tập các số tự nhiên 1,2,3,..., để là tập các số nguyên 0, ± 1, ± 2,..., và để cho là tập các số hợp các số ngẫu nhiên trong đó a và b thuộc với b ≠ 0, Dưới đây, chúng ta sẽ gọi một nghiệm cho xn + yn = zn, trong đó một hoặc nhiều x, y, hoặc z có giá trị là 0 thì cách giải sẽ trở nên bình thường. Một nghiệm mà cả ba không phải là giá trị 0 thì sẽ trở nên bất thường.

Để so sánh, chúng ta bắt đầu với công thức ban đầu.

Phát biểu gốc: Với n, x, y, z ∈ (nghĩa là: x, y, z là tất cả các số nguyên dương) và n > 2 thì phương trình xn + yn = zn vô nghiệm.

Các phương pháp phổ biến nhất của đối tượng theo cách này. Ngược lại, gần như tất cả các sách giáo khoa toán học đều ghi rõ nó qua :

Lịch sử toán học

Pythagoras và Diophantus

nhỏ|Định lý Pythagoras về tam giác vuông

Bộ ba số Pythagoras

Trong thời cổ đại, người ta biết rằng một tam giác có các cạnh lần lượt có tỷ lệ tương ứng là 3 : 4 : 5 sẽ là một tam giác vuông. Điều này đã được sử dụng trong xây dựng và sau đó sớm được dùng trong hình học. Trong thời cổ đại, điều này đã được phát hiện ra chỉ là một ví dụ của một nguyên tắc chung rằng bất kỳ tam giác nào có tổng bình phương hai cạnh bất kỳ bằng bình phương cạnh còn lại thì tam giác đó là tam giác vuông.

Đây được gọi là định lý Pythagoras, và một bộ ba số thỏa mãn được điều kiện này được gọi là bộ ba số Pythagoras. Nó được đặt tên dựa trên tên của nhà toán học Hy Lạp cổ đại - Pythagoras. Ví dụ các bộ ba (3, 4, 5) và (5, 12, 13). Có rất nhiều bộ ba số như vậy, và các phương pháp để tạo ra bộ ba số đó được nghiên cứu ở nhiều nền văn hóa khác nhau, bắt đầu với người Babylon, sau đó lần lượt là các nhà toán học Hy Lạp, Trung Quốc và Ấn Độ. Về mặt toán học, định nghĩa của một bộ ba số Pythagoras là một tập gồm ba số nguyên (a, b, c) thỏa mãn phương trình: a2+ b2 = c2.

Định lý cuối cùng của Fermat xem xét phương trình này cho bậc lớn hơn 2, và cho biết mặc dù có vô số bộ ba nguyên dương thỏa mãn phương trình cho n = 2, không có nghiệm dương nào cho n > 2.

Phương trình Diophantine

Phương trình Fermat, xn + yn = zn với các nghiệm là số nguyên dương, là một ví dụ về phương trình Diophantine, được đặt tên theo tên của nhà toán học Alexandrian ở thế kỷ thứ ba, Diophantus, người đã nghiên cứu chúng và phát triển phương pháp để giải một số phương trình Diophantine. Một vấn đề Diophantine điển hình là tìm hai số nguyên x và y sao cho tổng của chúng và tổng bình phương bằng hai số A và B tương ứng:

A = x + y

B = x2 + y2

Công việc chính của Diophantus là nghiên cứu cuốn Arithmetica, nhưng trong đó chỉ còn một vài phần công việc của ông là còn tồn tại. Phỏng đoán của Fermat về Định lý Cuối cùng của ông đã được truyền cảm hứng khi đọc một ấn bản mới của một cuốn sách Arithmetica, được Claude Bachet xuất bản và dịch sang tiếng La-tin vào năm 1621.

Phương trình Diophantine đã được nghiên cứu trong hàng ngàn năm. Ví dụ, phương trình Diophantine bậc hai x2 + y2 = z2 được giải bởi các bộ ba số Pythagoras, ban đầu được giải quyết bởi người Babylon (khoảng 1800 TCN). Cách giải cho các phương trình Diophantine tuyến tính, như 26x + 65y = 13, có thể được tìm thấy bằng thuật toán Euclide (khoảng thế kỷ 5 trước công nguyên). Nhiều phương trình Diophantine có một hình thức tương tự như phương trình của Định lý Cuối cùng của Fermat theo quan điểm của đại số. Ví dụ, có vô số các số nguyên dương x, y, và z sao cho xn + yn = zm trong đó n và m là các số nguyên tố tự nhiên.

Giả thuyết của Fermat

Vấn đề II.8 trong ấn bản 1621 của Arithmetica được viết bởi Diophantus. Vì phía bên phải của sách là lề quá nhỏ để chứa cách chứng minh của Fermat về "định lý cuối cùng" của Fermat.

Vấn đề II.8 của Arithmetica hỏi làm thế nào một số bình phương nhất định được chia thành hai số bình phương khác; nói cách khác, với một số k nhất định, tìm hai số u và v sao cho k2 = u2 + v2. Diophantus cho thấy làm thế nào để giải quyết vấn đề tổng và bình phương khi k = 4.

Vào khoảng năm 1637, Fermat đã viết bài toán cuối cùng của mình trong bản sao của Arithmetica bên cạnh vấn đề tổng bình phương của Diophantus.

Sau cái chết của Fermat năm 1665, con trai của ông, Clément-Samuel Fermat, đã sản xuất một ấn bản mới của cuốn sách (1670) với những nhận xét của cha mình. Mặc dù thời gian đó, nó không hẳn thực sự là một định lý. Sau này, nó đã được biết đến như Định lý Cuối cùng của Fermat bởi vì nó là tập cuối của các định lý được khẳng định của Fermat mà vẫn không được chứng minh.

Không biết liệu Fermat có thực sự tìm ra cách chứng minh hợp lệ cho tất cả các số mũ n không, nhưng dường như nó là không chắc chắn. Chỉ có một bằng chứng liên quan của ông đã tồn tại, cụ thể là cho trường hợp n = 4, như mô tả trong phần Bằng chứng cho số mũ cụ thể. Trong khi Fermat đặt ra các trường hợp n = 4 và n = 3 như là những thách thức đối với các nhà toán học, như Marin Mersenne, Blaise Pascal, và John Wallis. Ông chưa bao giờ đưa ra một trường hợp chung. Hơn nữa, trong ba mươi năm cuối cùng của cuộc đời, Fermat không bao giờ viết về "cách chứng minh kỳ diệu thực sự" của ông về trường hợp chung, và không bao giờ xuất bản nó. Van der Poorten cho thấy rằng mặc dù sự thiếu sót của một chứng minh là không đáng kể, sự thiếu thách thức có nghĩa là Fermat nhận ra rằng ông không có cách chứng minh nào cả; Trích dẫn Weil thì người ta cho rằng Fermat phải có một thời gian ngắn lừa dối mình với một ý tưởng không thể cứu vãn được nữa.

Các kỹ thuật mà Fermat có thể đã sử dụng trong một "cách chứng minh kỳ diệu" là không được biết đến.

Taylor và chứng minh của Wiles dựa vào các kỹ thuật của thế kỷ 20. Cách chứng minh của Fermat có thể đã được có bản hóa bằng cách so sánh.

Trong khi giả thuyết lớn của Harvey Friedman ngụ ý rằng bất kỳ định lý có thể chứng minh nào (bao gồm định lý cuối cùng của Fermat) có thể được chứng minh bằng cách sử dụng 'số học cơ bản', thì một bằng chứng cần phải là "cơ bản" chỉ theo nghĩa kỹ thuật và có thể liên quan đến hàng triệu bước, quá lâu để có được bằng chứng của Fermat.

Giả thiết Fermat

Định lý này được gọi là định lý cuối cùng của Fermat hay định lý Lớn Fermat là vì vào năm 1630, Fermat cho rằng không thể tìm được nghiệm (nguyên) cho phương trình bậc ba. Điều lý thú ở đây là phỏng đoán này được Fermat viết lại trên lề cuốn sách Arithmetica của Diophantus mà không chứng minh, nhưng có kèm theo dòng chữ: "Tôi có một phương pháp rất hay để chứng minh cho trường hợp tổng quát, nhưng không thể viết ra đây vì lề sách quá hẹp." Việc ông có thực sự chứng minh được định lý đó hay không vẫn còn gây tranh cãi, nhưng vấn đề này đã trở thành một vấn đề nổi tiếng trong toán học. Các nhà toán học hết thế hệ này đến thế hệ khác đã cố sức và đều thất bại trong việc tìm ra lời giải cho định lý này.

Với những dòng viết tay đó, nhà toán học người Pháp Pierre de Fermat đã chính thức buông lời thách đố đối với thế hệ các nhà toán học sau ông. Nhiều nhà toán học đã dành cả cuộc đời để cố chứng minh định lý phát biểu nghe có vẻ hết sức đơn giản này.

Hành trình mấy trăm năm để giải lời thách đố, cùng với sự phức tạp của lời giải hàng trăm trang, từ bao thế hệ các nhà toán học đã làm người ta vừa nghi ngờ dòng ghi chú của Fermat, vừa tò mò, thán phục ông.

Lịch sử chứng minh định lý lớn Fermat

Cho tới đầu thế kỷ 20 các nhà toán học chỉ chứng minh định lý này là đúng với n = 3, 4, 5, 7 và các bội số của nó. Nhà toán học người Đức Ernst Kummer đã chứng minh định lý này là đúng với mọi số nguyên tố tới 100 (trừ 3 Số nguyên tố phi chính quy là 37, 59, 67).

Nhà toán học vĩ đại người Thụy Sĩ Leonhard Euler (1707 – 1783) đã chứng minh định lý cho trường hợp n = 3 và n = 4.

Năm 1828, Dirichlet chứng minh cho trường hợp n = 5.

Vào những năm 1840, Gabriel Lamé chứng minh với n = 7.

200 năm sau Fermat, định lí mới được chứng minh với n = 3, 4, 5, 6 và 7.

Định lý quá khó và Bell trong cuốn sách "Bài toán cuối cùng" đã phải viết rằng: có lẽ nền văn minh của chúng ta cáo chung trước khi các nhà toán học tìm ra lời giải cho bài toán.

Tuy vậy, năm 1908, định lý Fermat đột ngột gây được sự chú ý trở lại nhờ công của một nhà công nghiệp và tiến sĩ toán người Đức tên là Paul Wolfskehl. Do gặp phải một chuyện bất hạnh trong đời sống riêng, ông quyết định sẽ tự sát vào lúc nửa đêm. Trong khi chờ đợi, ông tình cờ đọc một chứng minh của Kummer liên quan đến định lí Fermat. Chìm đắm trong sự suy tư, ông vượt qua giờ phút định mệnh lúc nào không biết. Sự đam mê toán học đã hồi sinh cuộc đời ông. Ông quyết định dành gần hết gia sản của mình lập nên giải thưởng Wolfshehl dành tặng cho người nào tìm ra lời giải của định lý Fermat. Trị giá giải thưởng là 100.000 mác tương đương 1,75 triệu USD, lớn hơn giải Nobel.

Khi giải thưởng được thông báo, các bài dự thi ùn ùn đổ về Đại học Gottingen. Ngay trong năm treo giải, có 621 "lời giải" được đệ trình và mấy năm sau thì số thư từ chất cao đến 3m. Tất cả đều sai.

Quá trình giải của Andrew Wiles

Trong lịch sử công cuộc tìm lời giải cho "Định lý cuối cùng của Fermat" có người phải tự tử và có những người tự lừa chính mình. Cuối cùng sau gần 4 thế kỷ, nhà toán học người Anh, Andrew Wiles cũng công bố lời giải độc nhất vô nhị vào mùa hè năm 1993 và bản chỉnh sửa cuối cùng vào năm 1995, với lời giải dài 200 trang. Tháng 5 năm 1993, Wiles khoe với vợ của mình là đã giải thành công. Tháng 6 năm 1993, "Elliptic Curves and Modular Forms", Wiles lần đầu tiên công bố là ông đã giải được Định lý lớn Fermat. Trong tháng 7 và tháng 8 năm 1993, Nick Katz, đồng nghiệp của Wiles tại Đại học Princeton, trao đổi email với ông về những điểm chưa hiểu rõ, trong đó nhắc rằng trong chứng minh của ông có 1 sai lầm căn bản. Tháng 9 năm 1993, Wiles nhận ra chỗ sai và cố gắng sửa. Trong ngày sinh nhật của vợ ông, ngày 6 tháng 10, bà nói chỉ cần quà sinh nhật là một chứng minh đúng, thế nhưng, dù đã cố gắng hết sức, Wiles vẫn không làm được. Tháng 11 năm 1993, ông gởi email công bố là có trục trặc trong phần của chứng minh đó của mình. Sau nhiều tháng thất bại trong việc tìm hướng giải quyết, Wiles sắp chịu thua. Trong tuyệt vọng, ông yêu cầu giúp đỡ. Richard Taylor, một sinh viên cũ của ông, đã tới Princeton cùng nghiên cứu với ông. nhỏ|phải|[[Andrew Wiles]] Ba tháng đầu 1994, ông cùng Taylor tìm mọi cách sửa chữa vấn đề nhưng vô hiệu. Tháng 9 năm 1994, ông quay lại nghiên cứu một vấn đề căn bản mà chứng minh của ông được xây dựng dựa trên đó. Ngày 19 tháng 9 năm 1994 phát hiện cách sửa chữa chỗ trục trặc đơn giản và đẹp, dựa trên một cố gắng chứng minh đã làm 3 năm trước. Sau khi coi lại cẩn thận, ông mừng rỡ nói với phu nhân là đã làm được. Tháng 5 năm 1995 đăng lời giải trên Annals of Mathematics (Đại học Princeton). *Tháng 8 năm 1995 hội thảo ở Đại học Boston, giới toán học công nhận chứng minh là đúng.

Helen G. Grundman, giáo sư toán trường Bryn Mawr College, đánh giá tình hình của cách chứng minh đó như sau: :"Tôi nghĩ là ta có thể nói, vâng, các nhà toán học hiện nay đã bằng lòng với cách chứng minh Định lý lớn Fermat đó. Tuy nhiên, một số sẽ cho là chứng minh đó của một mình Wiles mà thôi. Thật ra chứng minh đó là công trình của nhiều người. Wiles đã có đóng góp đáng kể và là người kết hợp các công trình lại với nhau thành cái mà ông đã nghĩ là một cách chứng minh. Mặc dù cố gắng khởi đầu của ông được phát hiện sau đó là có sai lầm, Wiles và người phụ tá Richard Taylor đã sửa lại được, và nay đó là cái mà ta tin là cách chứng minh đúng Định lý lớn Fermat." :"Chứng minh mà ta biết hiện nay đòi hỏi sự phát triển của cả một lãnh vực toán học chưa được biết tới vào thời Fermat. Bản thân định lý được phát biểu rất dễ dàng và vì vậy xem ra có vẻ đơn giản một cách giả tạo; bạn không cần biết rất nhiều về toán để hiểu bài toán. Tuy nhiên, để rồi nhận ra rằng, theo kiến thức tốt nhất của bạn, cần phải biết rất nhiều về toán mới có thể giải được nó. Vẫn là một câu hỏi chưa có lời đáp rằng liệu có hay không một cách chứng minh Định lý lớn Fermat mà chỉ liên quan tới toán học và các phương pháp đã có vào thời Fermat. Chúng ta không có cách nào trả lời trừ phi ai đó tìm ra một chứng minh như vậy."

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
phải|Bài toán II.8 trong _Arithmetica_ của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670) **Định lý cuối cùng của Fermat** (hay còn gọi là
**Định lý nhỏ của Fermat** (hay định lý Fermat nhỏ - phân biệt với định lý Fermat lớn) khẳng định rằng nếu p là một số nguyên tố, thì với số nguyên a bất kỳ,
**Chứng minh của Wiles về định lý cuối cùng của Fermat** là chứng minh toán học của nhà toán học người Anh Andrew Wiles về một trường hợp đặc biệt của định lý Module đối
phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một **định lý** là một mệnh đề phi hiển nhiên đã được chứng minh là
**Định lý Taniyama–Shimura** là một định lý xây dựng một mối liên hệ quan trọng giữa các đường cong elip, một khái niệm trong hình học đại số và các dạng modular, là các hàm
**Định lý của Ribet** (hay **Phỏng đoán Epsilon - Phỏng đoán ε**, tiếng Anh: **Ribet's theorem**) là một phần của lý thuyết số. Nó đề cập tới đến các thuộc tính của các biểu diễn
**Định lý Euler** phát biểu rằng nếu n (n thuộc N*) là số nguyên dương bất kỳ và a là số nguyên tố cùng nhau với n, thì a^{\varphi (n)} \equiv 1 \pmod{n} trong đó
**Định lý Fermat về tổng của hai số chính phương** phát biểu như sau: :"Một số nguyên tố lẻ _p_ có thể biểu diễn được dưới dạng tổng của hai số chính phương, tức là
Nhà toán học người Pháp thế kỷ thứ 17 Pierre de Fermat đã phát hiện ra nhiều định lý. Trong đó, **định lý Fermat** có thể đề cập đến một trong các định lý sau:
**Andrew John Wiles** là nhà toán học người Anh, được biết đến như người đầu tiên chứng minh được định lý lớn Fermat. Wiles được giới thiệu về định lý lớn Fermat ngay lúc ông
Trong lý thuyết số, **định lý Wilson** phát biểu rằng: cho _p_ là số tự nhiên lớn hơn 1, khi đó p là số nguyên tố, khi và chỉ khi (_p_-1)!+1 chia hết cho _p_.
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Pierre de Fermat** (, phiên âm: _"Pi-e Đờ Phéc-ma"_, 17 tháng 8 năm 1607 ## Công việc Công trình tiên phong của Fermat trong Hình học giải tích (_Methodus ad disquirendam maximam et minimam et
Trong đại số, **lý thuyết vành** là các nghiên cứu về vành—các cấu trúc đại số trong đó phép cộng và phép nhân được định nghĩa và có các thuộc tính tương tự như các
Trong lý thuyết số, **số nguyên tố chính quy** là một loại đặc biệt của số nguyên tố, được định nghĩa bởi Ernst Kummer trong 1850 để chứng minh một số trường hợp của định
**Lý thuyết số đại số** là một nhánh của lý thuyết số sử dụng các kỹ thuật của đại số trừu tượng để nghiên cứu các số nguyên, các số hữu tỷ và các tổng
thumb|[[Đồ thị nửa lôgarit của các nghiệm của phương trình x^3+y^3+z^3=n cho số nguyên x, y, và z, với 0\le n\le 100. Dải màu xanh lá cây đánh dấu các giá trị n được chứng
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
NHỮNG CÂU HỎI LỚN đề cập đến những vấn đề cơ bản trong khoa học tự nhiên và xã hội, nhưng vẫn khiến những bộ óc vĩ đại trong lịch sử đau đầu. Từ những
NHỮNG CÂU HỎI LỚN đề cập đến những vấn đề cơ bản trong khoa học tự nhiên và xã hội, nhưng vẫn khiến những bộ óc vĩ đại trong lịch sử đau đầu. Từ những
NHỮNG CÂU HỎI LỚN đề cập đến những vấn đề cơ bản trong khoa học tự nhiên và xã hội, nhưng vẫn khiến những bộ óc vĩ đại trong lịch sử đau đầu. Từ những
NHỮNG CÂU HỎI LỚN đề cập đến những vấn đề cơ bản trong khoa học tự nhiên và xã hội, nhưng vẫn khiến những bộ óc vĩ đại trong lịch sử đau đầu. Từ những
NHỮNG CÂU HỎI LỚN đề cập đến những vấn đề cơ bản trong khoa học tự nhiên và xã hội, nhưng vẫn khiến những bộ óc vĩ đại trong lịch sử đau đầu. Từ những
Những Câu Hỏi Lớn - Toán Học NHỮNG CÂU HỎI LỚN đề cập đến những vấn đề cơ bản trong khoa học tự nhiên và xã hội, nhưng vẫn khiến những bộ óc vĩ đại
Trong lý thuyết số, **trường cyclotomic** là trường số có được bằng cách mở rộng thêm căn đơn vị phức cho là trường các số hữu tỉ. Trừong cyclotomic đóng vai trò quan trọng trong
Trong lý thuyết số, **số nguyên tố Wolstenholme** là loại số nguyên tố đặc biệt thỏa mãn dạng mạnh hơn của định lý Wolstenholme. Định lý Wolstenholme là quan hệ đồng dư được thỏa mãn
**Ernst Eduard Kummer** (Sinh ngày 29 tháng 1 năm 1810 – mất ngày 14 tháng 5 năm 1893) là nhà toán học Đức. Với kinh nghiệm trong toán học ứng dụng, Kummer huấn luyện các
**Giải Cole** tên đầy đủ là ** Giải Frank Nelson Cole**, là giải thưởng của Hội Toán học Hoa Kỳ dành cho các nhà toán học có những đóng góp xuất sắc. Giải được chia
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
**Leonhard Euler** ( , ; 15 tháng 4 năm 170718 tháng 9 năm 1783) là một nhà toán học, nhà vật lý học, nhà thiên văn học, nhà lý luận và kỹ sư người Thụy
**Số Fermat** là một khái niệm trong toán học, mang tên nhà toán học Pháp Pierre de Fermat, người đầu tiên đưa ra khái niệm này. Nó là một số nguyên dương có dạng :F_{n}
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
thumb|Việc tìm tất cả các [[bộ ba số Pythagoras|tam giác vuông có cạnh nguyên tương đương với việc giải phương trình Diophantos .]] Trong toán học, **phương trình Diophantos** là phương trình đa thức, thường
**Giả thuyết ABC** là một giả thuyết toán học, được phát biểu ban đầu năm 1985 bởi Joseph Oesterlé và được tổng quát hóa sau đó bởi David Masser. Giả định này có thể liên
**Số nguyên tố Mersenne** là một số nguyên tố có giá trị bằng 2n − 1. Ví dụ 31 là số nguyên tố Mersenne vì 31 = 25 − 1 (31 và 5 đều là
**Kỹ thuật tạo lệnh** hoặc **kỹ thuật ra lệnh** (prompt engineering) là quá trình cấu trúc một **văn bản đầu vào** cho AI tạo sinh giải thích và diễn giải. Một **văn bản đầu vào**
**Đại số** là một nhánh của toán học nghiên cứu những hệ thống trừu tượng nhất định gọi là cấu trúc đại số và sự biến đổi biểu thức trong các hệ thống này. Đây
Trong toán học, **đa thức** là biểu thức bao gồm các biến và các hệ số, và chỉ dùng các phép cộng, phép trừ, phép nhân, và lũy thừa với số mũ tự nhiên của
Trong toán học, **số Cullen** là số nằm trong dãy số C_n = n \cdot 2^n + 1 (trong đó n là số tự nhiên). Các số Cullen được lần đầu nghiên cứu bởi nhà
nhỏ|phải|[[Định lý Pytago|Định lý Pythagoras: _a_2 + _b_2 = _c_2]] Một **bộ ba số Pythagoras** (còn gọi là **bộ ba số Pytago** hay **bộ ba số Pythagore**) gồm ba số nguyên dương a, b, và c, sao cho a2
Trang web **arXiv** (phát âm a-kai từ chữ archive (nghĩa là lưu trữ), nếu như "X" là chữ cái Hy Lạp _Chi_, χ) là một cơ sở dữ liệu lưu trữ điện tử dạng tiền
**1729** là số tự nhiên liền sau 1728 và liền trước 1730. Nó còn được biết là **số Hardy-Ramanujan**, sau câu chuyện của nhà toán học Anh G. H. Hardy khi ông thăm nhà toán
**9999 Wiles** là một tiểu hành tinh vành đai chính kiểu C. Quỹ đạo quay quanh Mặt Trời là 4.8 năm. Nó được phát hiện bởi C. J. van Houten, I. van Houten-Groeneveld và T.
**Johann Carl Friedrich Gauß** (; ; ; 30 tháng 4 năm 1777 – 23 tháng 2 năm 1855) là một nhà toán học và nhà khoa học người Đức tài năng, người đã có nhiều
Trong toán học, **dãy Lucas** U_n(P,Q)V_n(P, Q) là các dãy số nguyên đệ quy không đổi thỏa mãn hệ thức truy hồi : x_n = P \cdot x_{n - 1} - Q \cdot
nhỏ|Các bảng số học dành cho trẻ em, Lausanne, 1835 **Số học** là phân nhánh toán học lâu đời nhất và sơ cấp nhất, được hầu hết mọi người thường xuyên sử dụng từ những
phải|Trang tiêu đề của bản in cuốn _Số học_ của Diofantos năm 1621, do [[Claude Gaspard Bachet de Méziriac dịch sang tiếng La tinh.]] **Diofantus xứ Alexandria** (Tiếng Hy Lạp: . sinh khoảng năm 200
thumb|right|Khi điểm nằm trong một khoảng so với , nằm trong một khoảng so với Trong giải tích, **định nghĩa (\epsilon,\delta) của giới hạn** (định nghĩa giới hạn bằng ký tự epsilon–delta) là một phát