✨Định lý cơ bản của đại số

Định lý cơ bản của đại số

Trong toán học, định lý cơ bản của đại số khẳng định rằng mọi đa thức một biến khác hằng số với hệ số phức có ít nhất một nghiệm phức. Điều đó tương đương với trường số phức có tính đóng đại số.

Định lý này đôi lúc còn được phát biểu dưới dạng: mọi đa thức một biến khác đa thức không với hệ số phức có số nghiệm phức bằng bậc của nó, nếu mỗi nghiệm được tính với số bội của nó.

Mặc dù với tên gọi là "Định lý cơ bản của đại số", không có một chứng minh "thuần đại số" cho định lý này. Mọi chứng minh đều phải sử dụng tính đầy đủ của tập số thực (hoặc các dạng tương đương của tính đầy đủ). Thêm vào đó, nó không hề cơ bản đối với đại số hiện đại, định lý này được đặt tên khi các nghiên cứu đại số vào thời điểm đó là giải các phương trình đa thức hệ số thực hoặc phức.

Lịch sử

Peter Rothe (Petrus Roth), trong cuốn sách Arithmetica Philosophica của ông (xuất bản năm 1608) đã viết rằng một đa thức bậc n (với hệ số thực) có thển nghiệm. Albert Girard, trong quyển sách L'invention nouvelle en l'Algèbre (xuất bản năm 1629), khẳng định rằng một phương trình đa thức bậc nn nghiệm, nhưng ông không nói rằng chúng phải là số thực. Hơn nữa, ông nói rằng khẳng định của ông xảy ra "trừ khi phương trình không đầy đủ", tức là không có hệ số nào bằng 0. Tuy nhiên, khi ông giải thích chi tiết ý của ông, rõ ràng rằng ông tin khẳng định của ông là luôn luôn đúng; ví dụ, ông chỉ ra rằng phương trình x^4=4x-3, mặc dù không đầy đủ nhưng nó có 4 nghiệm: 1 (nghiệm bội hai), -1+i\sqrt2-1-i\sqrt2.

Như được đề cập bên dưới, từ định lý cơ bản của đại số, ta suy ra rằng mọi đa thức hệ số thực khác hằng số có thể viết dưới dạng tích của các đa thức hệ số thực bậc 1 hoặc 2. Tuy nhiên, năm 1702, Leibniz khẳng định rằng không một đa thức nào có dạng x^4+a^4 (với a thực và khác 0) có thể viết như vậy. Sau đó, Nikolaus Bernoulli khẳng định tương tự với đa thức x^4-4x^3+2x^2+4x+4, nhưng ông nhận được một bức thư từ Euler vào năm 1742, trong đó, Euler nói rằng đa thức đó có thể viết dưới dạng

\left(x^2-(2+\alpha)x+1+\sqrt{7}+\alpha \right) \left(x^2-(2-\alpha)x+1+\sqrt{7}-\alpha \right)
trong đó α là căn bậc hai của 4 + 2√7. Euler cũng chú ý rằng
x^4+a^4=\left(x^2+a\sqrt{2}\cdot x+a^2 \right) \left(x^2-a\sqrt{2}\cdot x+a^2 \right)

Cố gắng đầu tiên để chứng minh định lý thuộc về d'Alembert vào năm 1746, tuy nhiên chứng minh của ông không được hoàn thành. Các thử nghiệm khác được thực hiện bởi Euler (1749), de Foncenex (1759), Lagrange (1772), và Laplace (1795). Trong ngôn ngữ hiện đại, Euler, de Foncenex, Lagrange và Laplace đã giả định sự tồn tại của trường phân rã của đa thức p(z).

Vào cuối thế kỉ thứ 18, hai chứng minh mới được công bố mà không giả sử tính tồn tại của nghiệm. Một trong số đó, lời giải của James Wood và chủ yếu sử dụng đại số, được công bố vào năm 1798 và hoàn toàn bị bỏ qua. Chứng minh của Wood có một lỗi đại số. Chứng minh còn lại được công bố bởi Gauss vào năm 1799 và nó thuần túy hình học, nhưng có một lỗi topo, và được bổ sung bởi Ostrowski vào năm 1920, được bàn luận trong một cuốn sách của Small năm 1981 (Smale viết, "...Tôi muốn chỉ ra một lỗi lớn trong chứng minh của Gauss. Nó là một điểm tinh tế, thậm chí cho đến bây giờ, rằng một đường cong phẳng đại số thực không có thể đi vào một đĩa mà không đi ra. Trong thực tế, mặc dù Gauss đã viết lại chứng mình này 50 năm sau đó, lỗi này vẫn còn. Mãi cho đến năm 1920 Chứng minh của Gauss mới được hoàn tất. Trong tham chiếu đến Gauss, A. Ostrowski đã có một bài báo hoàn chỉnh chứng minh này, cũng như cung cấp cho một cuộc thảo luận tuyệt vời về bài toán..."). Một chứng minh đúng đắn được công bố bởi Argand vào năm 1806; đây là lần đầu tiên định lý cơ bản của đại số được phát biểu cho đa thức với hệ số phức, chứ không phải chỉ với hệ số thực. Gauss đã đưa ra hai chứng minh khác vào năm 1816 và một phiên bản khác cho chứng minh đầu tiên của ông vào năm 1849.

Cuốn sách đầu tiên có chứa một chứng minh cho định lý nằm trong cuốn Cours d'analyse de l'École Royale Polytechnique của Cauchy (1821). Trong cuốn sách này trình bày chứng minh của Argand, tuy nhiên Argand không được ghi nhận cho chứng minh này.

Cho đến nay, không một chứng minh nào có tính xây dựng nghiệm. Weierstrass là người đầu tiên, vào giữa thế kỉ 19, đưa ra bài toán tìm một chứng minh xây dựng nghiệm cho định lý có bản của đại số. Ông đưa ra lời giải của mình, trong ngôn ngữ hiện đại là sự kết hợp của phương pháp Durand--Kerner và nguyên lý đồng luân liên tục, vào năm 1891. Một chứng minh khác thuộc loại này được đưa ra bởi Hellmuth Knesser vào năm 1940 và được đơn giản hóa bởi con trai của ông, Martin Knesser, vào năm 1981.

Nếu không sử dụng tiên đề chọn đếm được, không thể có một chứng minh xây dựng nghiệm cho định lý cơ bản của đại số dựa trên cách xây dựng tập số thực của Dedekind. Tuy nhiên, Fred Richman lại chứng minh được một phiên bản phát biểu lại của định lý.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong toán học, **định lý cơ bản của đại số** khẳng định rằng mọi đa thức một biến khác hằng số với hệ số phức có ít nhất một nghiệm phức. Điều đó tương đương
Trong toán học, **định lý cơ bản của số học** (tiếng Anh: Fundamental theorem of arithmetic) hay **định lý phân tích thừa số nguyên tố** (tiếng Anh: Prime factorization theorem) phát biểu rằng mọi số
Trong đại số trừu tượng, **định lý cơ bản về nhóm cyclic** khẳng định rằng nếu _G_ là một nhóm cyclic cấp _n_ thì mọi nhóm con của _G_ cũng là cyclic. Hơn nữa, cấp
**Đại số** là một nhánh của toán học nghiên cứu những hệ thống trừu tượng nhất định gọi là cấu trúc đại số và sự biến đổi biểu thức trong các hệ thống này. Đây
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
thumb|right|[[Đường cong Tschirnhausen là một ví dụ về đường cong đại số bậc ba.]] Trong toán học, **đường cong phẳng đại số affin** là tập nghiệm của đa thức hai biến. **đường cong phẳng đại
**Đa tạp đại số** là một trong những đối tượng được nghiên cứu nhất trong hình học đại số. Đa tạp đại số ban đầu được định nghĩa là tập nghiệm của hệ phương trình
liên_kết=https://en.wikipedia.org/wiki/File:Rank-nullity.svg|nhỏ|263x263px|Mô tả liên hệ giữa hạng và số chiều của hạt nhân **Định lý về hạng** (còn gọi là **định lý về hạng và số vô hiệu**, **định lý về số chiều**) là một trong
Một **phương trình đại số** với _n_ biến số là một phương trình có dạng: :_f_(_x_1, _x_2,..., _x_n) = 0 trong đó _f_(_x_1,_x_2,...,_x_n) là một đa thức của _n_ ẩn _x_1, _x_2,..., _x__n_. :f=\sum_{}^{} c_{e_1,e_2,...,e_n}x_1^{e_1}x_2^{e_2}
thumb|Chân dung [[François Viète]] Trong toán học, **định lý Viète** hay **hệ thức Viète** (tiếng Pháp: _Relations de Viète_) do nhà toán học Pháp François Viète tìm ra, nêu lên mối quan hệ giữa các
Trong đại số trừu tượng, **định lý Abel–Ruffini** (còn gọi là **định lý bất khả Abel**) phát biểu rằng không tồn tại nghiệm đại số—tức là nghiệm biểu diễn bằng căn thức—của phương trình đa
Trong toán học, một trường F được gọi là **đóng đại số** nếu mọi đa thức một ẩn có bậc khác không, với hệ số trong F, có nghiệm trong F. ## Ví dụ Trường
thumb|300 px|right|Với mọi hàm số liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm c \in (a,b) sao cho đường thẳng nối hai điểm (a,f(a))(b,f(b)) song song với tiếp
thumb|[[Phương trình bậc hai|Công thức giải phương trình bậc 2 thể hiện các nghiệm của phương trình bậc hai ax^2 + bx +c=0 theo các hệ số của nó a, b, c, trong đó a
**Chứng minh của Wiles về định lý cuối cùng của Fermat** là chứng minh toán học của nhà toán học người Anh Andrew Wiles về một trường hợp đặc biệt của định lý Module đối
Trong toán học, trong lĩnh vực đại số trừu tượng, **định lý cấu trúc cho các mô đun hữu hạn sinh trên một vành chính** là một tổng quát hóa của định lý cơ bản
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
right|thumb|Kí hiệu tập hợp **số thực** (ℝ) Trong toán học, một **số thực** là một giá trị của một đại lượng liên tục có thể biểu thị một khoảng cách dọc theo một đường thẳng
**_Liên minh công lý phiên bản của Zack Snyder_**, hay còn được gọi là phần phim "**Snyder Cut**", là phiên bản năm 2021 của bộ phim siêu anh hùng Mỹ năm 2017 _Liên minh công
Trong đại số tuyến tính, **hạng** (rank) của một ma trận là số chiều của không gian vectơ được sinh (span) bởi các vectơ cột của nó. Điều này tương đương với số cột độc
**Lý thuyết số siêu việt** là một nhánh của lý thuyết số nghiên cứu các số siêu việt (các số không phải là nghiệm của bất kỳ phương trình đa thức nào với các hệ
nhỏ|429x429px|Boolean lattice of subsets Trong đại số trừu tượng, **đại số Boole** hay **đại số Boolean** là một cấu trúc đại số có các tính chất cơ bản của cả các phép toán trên tập
Trong lý thuyết hệ thống điều khiển, **tiêu chuẩn ổn định Routh-Hurwitz **là một kiểm tra toán học là một điều kiện cần và đủ cho sự ổn định của một hệ thống điều khiển
**Johann Carl Friedrich Gauß** (; ; ; 30 tháng 4 năm 1777 – 23 tháng 2 năm 1855) là một nhà toán học và nhà khoa học người Đức tài năng, người đã có nhiều
phải|nhỏ|250x250px|Ma trận biến đổi _A_ tác động bằng việc kéo dài vectơ _x_ mà không làm đổi phương của nó, vì thế _x_ là một vectơ riêng của _A_. Trong đại số tuyến tính, một
phải|Bài toán II.8 trong _Arithmetica_ của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670) **Định lý cuối cùng của Fermat** (hay còn gọi là
Trong toán học, cụ thể hơn là trong đại số trừu tượng, **các định lý đẳng cấu** (hay còn được biết với tên **các định lý đẳng cấu của Noether**) là các định lý mô
|nhỏ|300x300px|Trong [[không gian Euclide ba chiều, ba mặt phẳng này biểu diễn các nghiệm của phương trình tuyến tính, và giao tuyến của chúng biểu thị tập các nghiệm chung: trong trường hợp này là
Trong toán học, **đa thức** là biểu thức bao gồm các biến và các hệ số, và chỉ dùng các phép cộng, phép trừ, phép nhân, và lũy thừa với số mũ tự nhiên của
**Tôpô đại số** là một nhánh của toán học sử dụng các công cụ của đại số để nghiên cứu các không gian tôpô. ## Phương pháp bất biến đại số Mục đích là xem
Đại dịch COVID-19 đã ảnh hưởng tới các mối quan hệ quốc tế và gây ra những căng thẳng ngoại giao, đồng thời cũng khiến Hội đồng Bảo an Liên Hợp Quốc phải ra nghị
**Lý thuyết số đại số** là một nhánh của lý thuyết số sử dụng các kỹ thuật của đại số trừu tượng để nghiên cứu các số nguyên, các số hữu tỷ và các tổng
Trong toán học, đặc biệt là trong lĩnh vực lý thuyết nhóm hữu hạn, **định lý Sylow** là một nhóm các định lý được đặt tên theo nhà toán học Na Uy Ludwig Sylow vào
nhỏ|Các quốc gia có ít nhất một ngày bầu cử bị thay đổi do COVID-19 Đại dịch COVID-19 đã ảnh hưởng đến các mối quan hệ quốc tế và ảnh hưởng đến hệ thống chính
Trong toán học, **nhóm cơ bản** là một trong những khái niệm cơ bản của tô pô đại số. Mỗi một điểm trong không gian tô pô, có một nhóm cơ bản liên kết với
Trong Lý thuyết thông tin, **Định lý mã hóa trên kênh nhiễu** (_tiếng Anh: noisy-channel coding theorem_) đề xuất rằng, cho dù một kênh truyền thông có bị ô nhiễm bởi nhiễu âm bao nhiêu
**Luật cơ bản Cộng hòa Liên bang Đức** () là Hiến pháp của Cộng hòa Liên bang Đức. Được phê chuẩn ngày 8 tháng 5 năm 1949 tại Bonn với chữ ký của 3 quốc
Trong lý thuyết đồ thị, **định lý Kirchhoff**, hay **định lý Kirchhoff cho ma trận và cây**, đặt tên theo Gustav Kirchhoff, là một định lý về số cây bao trùm của một đồ thị.
Là một nhánh của toán học, đại số phát triển vào cuối thế kỷ 16 ở châu Âu với công trình của François Viète. Đại số được xem xét một cách đáng chú ý như
phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một **định lý** là một mệnh đề phi hiển nhiên đã được chứng minh là
Trong toán học, **định lý Wolstenholme** phát biểu rằng với bất kỳ số nguyên tố p \geq 5, biểu thức đồng dư :{2p-1 \choose p-1} \equiv 1 \pmod{p^3} được thỏa mãn, trong đó dấu ngoặc
Vật Lí Đại Cương Tập 1 - Dùng Cho Các Trường Đại Học Khối Kỹ Thuật Công Nghiệp Tác giả Lương Duyên Bình CB NXB NXB Giáo Dục Việt Nam Năm XB 112020 - Số
Vật Lí Đại Cương Tập 1 - Cơ Nhiệt Bài Tập Vật Lí Đại Cương Tập 1 - Cơ Nhiệt Tác giả Lương Duyên Bình CB NXB NXB Giáo Dục Việt Nam Năm XB 112020
**Tương tác cơ bản** hay **lực cơ bản** là các loại lực của tự nhiên mà tất cả mọi lực, khi xét chi tiết, đều quy về các loại lực này. Trong cơ học cổ
**Định lý phạm trù Baire** là định lý quan trọng trong topo, trong giải tích hiện đại, định lý mang tên nhà toán học người Pháp René-Louis Baire (1874 - 1932). Định lý có hai
Một **hệ thống đại số máy tính** là một phần mềm máy tính thực hiện biến đổi các biểu thức toán học. Cốt lõi của hệ thống này là lưu trữ và biến đổi các
Chân dung Clausius, cha đẻ của định luật tăng giảm Entropy **Định luật 2 nhiệt động lực học** hay **nguyên lý thứ hai của nhiệt động lực học** là một trong 4 định luật cơ
**Luật Cơ bản: Israel là quốc gia dân tộc của người Do Thái** (), thường được gọi là **Luật Quốc gia dân tộc** (), là Luật cơ bản của Israel được Quốc hội Israel thông
**Đại số trừu tượng** là một ngành toán học liên quan đến việc nghiên cứu các cấu trúc đại số như nhóm, vành (toán học), trường, hay các cấu trúc tổng quát khác. Thuật ngữ
Trong tô-pô đại số, **groupoid cơ bản** của một không gian tô-pô khái quát khái niệm nhóm cơ bản. Nó là một bất biến tô-pô, và do đó có thể được sử dụng để phân