✨Lý thuyết biểu diễn

Lý thuyết biểu diễn

nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác biến đổi đa giác, bao gồm phép phản xạ và phép quay.]] Lý thuyết biểu diễn là một nhánh của toán học nghiên cứu các cấu trúc đại số trừu tượng bằng cách biểu diễn các phần tử của chúng dưới dạng biến đổi tuyến tính của các không gian vectơ, cũng như nghiên cứu về mô-đun trên các đối tượng đại số trừu tượng này. Về cơ bản, một biểu diễn cụ thể hoá những cấu trúc đại số trừu tượng bằng cách mô tả các phần tử của chúng bằng ma trận và các toán tử đại số của nó (ví dụ như phép cộng ma trận và phép nhân ma trận). Vì lý thuyết ma trận và toán tử tuyến tính đã được hiểu rõ nên biểu diễn của những cấu trúc trừu tượng hơn thông qua những cấu trúc đại số tuyến tính quen thuộc giúp chắt lọc những tính chất toán học và đôi khi giúp đơn giản hoá những phép tính trên những lý thuyết trừu tượng.

Những cấu trúc đại số nằm trong định nghĩa này bao gồm nhóm, đại số kết hợp và đại số Lie. Trong số đó, nổi bật nhất (và đầu tiên trong lịch sử) là lý thuyết biểu diễn nhóm, trong đó các phần tử của 1 nhóm sẽ được biểu diễn bằng các ma trận khả nghịch sao cho toán tử trên nhóm là phép nhân ma trận.

Lý thuyết biểu diễn là một phương pháp hữu ích vì nó đơn giản hoá những bài toán trong đại số trừu tượng thành những vấn đề vốn đã được hiểu rõ, là những bài toán trong đại số tuyến tính. Ngoài ra, không gian vectơ mà một nhóm (ví dụ) trên đó được biểu diễn có thể tổng quát hoá thành vô hạn chiều, và nếu nó là một không gian Hilbert, những phương pháp giải tích toán học cũng có thể được áp dụng vào lý thuyết nhóm. Lý thuyết biểu diễn đóng vai trọng quan trọng trong vật lý vì nó mô tả ảnh hưởng của các nhóm đối xứng của 1 hệ vật lý lên nghiệm của các phương trình biểu diễn hệ đó.

Lý thuyết biển diễn thâm nhập khắp các lĩnh vực của toán học bởi 2 lý do. Thứ nhất, ứng dụng của lý thuyết biểu diễn rất đa dạng, bên cạnh tác động của nó lên đại số, nó còn:

  • giải thích và tổng quát hoá giải tích Fourier thông qua giải tích hàm điều hoà,
  • liên quan với hình học thông qua lý thuyết bất biến và chương trình Erlangen,
  • tác động đến lý thuyết số thông qua hàm tự đẳng cấu và chương trình Langlands.

Thứ hai, có rất nhiều hướng tiếp cận lý thuyết biểu diễn. Cùng 1 đối tượng có thể được nghiên cứu bằng nhiều phương pháp từ hình học đại số, lý thuyết mô-đun, lý thuyết số giải tích, hình học vi phân, lý thuyết toán tử, tổ hợp đại số và tô pô. Áp dụng lý thuyết biểu diễn, các cấu trúc đại số có thể được xem là một loại phạm trù (category) đặc biệt và các biểu diễn là hàm tử (functor) từ phạm trù của đối tượng đến phạm trù của mô-đun.

Định nghĩa của biểu diễn tối giản đã bao hàm cả bổ đề Schur: 1 ánh xạ đẳng biến \alpha:V\mapsto{W} giữa các biểu diễn tối giản chỉ có thể là ánh xạ không hoặc 1 phép đẳng cấu, do hạch (kernel) và ảnh (image) của nó đều là biểu diễn con. Cụ thể thông qua định nghĩa, khi V=W, phép tự đồng cấu đẳng biến của V tạo thành 1 đại số chia kết hợp trên trường F. Xét F là trường đóng đại số, phép tự đồng cấu đẳng biến duy nhất của 1 biểu diễn tối giản là phép nhân vô hướng của phần tử đơn vị.

Biểu diễn tối giản là nền tảng của lý thuyết biểu diễn: xét 1 biểu diễn V không tối giản, khi đó V được cấu tạo từ những biểu diễn con và 1 không gian thương "đơn giản hơn" (theo 1 mức độ nào đó); chẳng hạn, xét V hữu hạn chiều, khi đó cả biểu diễn con lẫn không gian thương sẽ có số chiều nhỏ hơn.

Tổng trực tiếp và mô-đun không khải triển được

Xét (V,\Phi)(W,\Psi) là các biểu diễn của nhóm G, tổng trực tiếp của V và W cũng là 1 biểu diễn được viết dưới dạng chính tắc qua phương trình:

g\cdot(v,w)=(g\cdot{v},g\cdot{w})
Tổng trực tiếp của 2 biểu diễn không mang nhiều thông tin về nhóm hơn từng biểu diễn riêng lẻ. Nếu 1 biểu diễn là tổng trực tiếp của 2 biểu diễn phi tầm thường con cố hữu, nó được coi là khai triển được. Nếu không thì nó được coi là không khai triển được.

Tính khả quy đầy đủ

Trong một số trường hợp nhất định, mỗi biểu diễn hữu hạn chiều là 1 tổng trực tiếp của những biểu diễn tối giản: các biểu diễn như vậy được gọi là nửa đơn giản (semisimple). Trong trường hợp đó, chỉ cần biết thông tin về biểu diễn tối giản là đủ. Những ví dụ về hiện tượng "khả quy đầy đủ" bao gồm các nhóm hữu hạn và nhóm compact, và các đại số Lie nửa đơn giản.

Trong trường hợp không khả quy đầy đủ, cần phải biết làm cách nào mô-đun không khai triển được được xây dựng từ biểu diễn tối giản thông qua mở rộng 1 không gian thương bằng 1 biểu diễn con.

Tích tenxơ của biểu diễn

Giả sử \Phi_1:G\mapsto(V_1)\Phi_2:G\mapsto(V_2) là biểu diễn của nhóm G. Khi đó ta có thể suy ra 1 biểu diễn \Phi_1\otimes\Phi_2 của G tác dụng lên không gian tích tenxơ là 1 không gian vectơ V_1\otimes{V_2} như sau:

(\Phi_1\otimes\Phi_2)(g)=\Phi_1(g)\otimes\Phi_2(g)
Nếu \Phi_1\Phi_2 là các biểu diễn của 1 đại số Lie, công thức sẽ trở thành: Biểu diễn nhóm hữu hạn thể hiện nhiều đặc trưng của 1 lý thuyết tổng quát và dẫn đến nhiều nhánh và chủ đề khác nhau trong lý thuyết biểu diễn.

Trên 1 trường có định trị không, biểu diễn của 1 nhóm hữu hạn H có một số tính chất tiện lợi. Thứ nhất, biểu diễn của G là nửa đơn giản (khả quy đầy đủ). Đây là hệ quả của định lý Maschke, phát biểu rằng biểu diễn con bất kỳ V của của 1 biểu diễn W trên G có 1 phần bù bất biến trên G. Một cách chứng minh là chọn 1 phép chiếu bất kỳ \pi từ W đến V và thay thế nó bằng lượng trung bình \pi_G của nó được cho bởi:

\piG(x)={1 \over |G|}\sum{g\in{Gg\cdot\pi(g^{-1}\cdot{x})
\pi_G khi đó đẳng biến, và hạch của nó là phần bù yêu cầu.

Biểu diễn hữu hạn chiều của G có thể được hiểu dựa vào lý thuyết định trị (character theory): định trị của 1 biểu diễn \Phi:G\mapsto GL(V)) là hàm lớp \chi\varphi:G\mapsto{F} định nghĩa bởi:

\chi\varphi(g)=\mathrm{Tr}(\varphi(g))
trong đó Tr là vết. Một biểu diễn tối giản của G được xác đinh đầy đủ bởi định trị của nó.

Định lý Maschke đúng với các trường có định trị dương p tổng quát hơn, như các trường hữu hạn, miễn là số nguyên số p là số đồng nguyên tố đối với cấp của G. Khi p và |G| có ước số chung lớn nhất, tồn tại biểu diễn của G là phi nửa đơn giản, đây là 1 nhánh nghiên cứu con gọi là lý thuyết biểu diễn mô-đun.

Kỹ thuật lượng trung bình cũng cho thấy nếu trường F là số thực hoặc số phức, thì biểu diễn bất kỳ của G bảo toàn 1 tích trong \langle\cdot,\cdot\rangle trên V theo cách:

\langle{g\cdot{v},g\cdot{w\rangle=\langle{v,w}\rangle
với mọi g trong Gv, w trong W. Nên biểu diễn bất kỳ trên G là đơn nguyên.

Các biểu diễn đơn nguyên tự động sẽ là nửa đơn giản, vì kết quả của Maschke có thể được chứng minh bằng cách lấy phần bù trực giao của 1 biểu diễn con. Khi nghiên cứu biểu diễn của các nhóm không hữu hạn, biểu diễn đơn nguyên cung cấp 1 sự tổng quát hoá tương đối tốt cho các biểu diễn thực và phức cho 1 nhóm hữu hạn.

Kết quả từ định lý Maschke và tính chất đơn nguyên dựa trên lượng trung bình có thể được tổng quát hoá thành các nhóm tổng quát hơn bằng cách thay thế lượng trung bình bằng tích phân, miễn là khái niệm phù hợp cho tích phân có thể được định nghĩa. Điều này có thể được thực hiện cho nhóm tôpô compact (bao gồm nhóm Lie compact), bằng cách sử dụng độ đo Haar, và kết quả là 1 lý thuyết với tên gọi giải tích điều hoà trừu tượng.

Trên các trường bất kỳ, tồn tại một lớp các nhóm hữu hạn khác có lý thuyết biểu diễn tương đối hoàn thiện là nhóm hữu hạn kiểu Lie. Minh hoạ tiêu biểu là nhóm đại số tuyến tính trên trường hữu hạn. Lý thuyết biểu diễn của nhóm đại số tuyến tính và nhóm Lie mở rộng các ví dụ này cho các nhóm vô hạn chiều, trong đó nhóm Lie có quan hệ mật thiết với biểu diễn đại số Lie. Tầm quan trọng của lý thuyết định trị cho nhóm hữu hạn có một sự tương tự như trong lý thuyết cân cho biểu diễn của nhóm Lie và đại số Lie.

Biểu diễn của nhóm hữu hạn G cũng liên quan trực tiếp đến biểu diễn đại số thông qua đại số nhóm F[G], là 1 không gian vector trên F với các phần tử của G là bộ cơ sở, cùng với một toán tử nhân đinh nghĩa bởi toán tử nhóm, độ tuyến tính, và điều kiện cần là ttoasn tử nhóm và phép nhân vô hướng phải giao hoán.

Biểu diễn mô-đun

Biểu diễn mô-đun của 1 nhóm hữu hạn G là biểu diễn trên 1 trường mà định trị của nó không đồng nguyên tố với \left \vert G \right \vert, dẫn đến định lý Maschke không còn hữu hiệu (vì \left \vert G \right \vert không khả nghịch trong F nên nó không chia được).

Cũng tương tự như ứng dụng trong lý thuyết nhóm, biểu diễn mô-đun xuất hiện 1 cách tự nhiên trong các nhánh nghiên cứu khác của toán học, ví dụ như hình học đại số, lý thuyết mã hoá, toán học tổ hợp, và lý thuyết số.

Biểu diễn đơn nguyên (unitary)

Một biểu diễn đơn nguyên của 1 nhóm G là 1 biểu diễn tuyến tính \Phi của G trên 1 không gian Hilbert thực hoặc (thường là) phức, sao cho \Phi(g) là 1 toán tử đơn nguyên với mọi g\in G . Các biểu diễn như vậy đã được sử dụng rộng rãi trong cơ học lượng tử từ những thập niên 1920, nhờ vào công trình đặc biệt của Hermann Weyl, và điều này đã tạo cảm hứng để phát triển lý thuyết này, nổi bật nhất là qua công trình khảo sát biểu diễn nhóm Poincaré của Eugene Wigner. Một trong những nhà tiên phong trong việc xậy dựng 1 lý thuyết tổng quát cho biểu diễn đơn nguyên (cho mọi nhóm G thay vì những nhóm cụ thể có ứng dụng hữu ích trong cơ học lượng tử) là George Mackey, và 1 lý thuyết mở rộng đã được phát triển bởi Harish-Chandra và những nhà nghiên cứu độc lập khác vào những thập niên 1950 và 1950. Lý thuyết này được phát triển hoàn thiện nhất cho trường hợp G là nhóm tôpô compact địa phương (Hausdorff) và biểu diễn là tôpô mạnh. Đối với nhóm G abel, đối ngẫu đơn nguyên là không gian các định trị; đối với nhóm G compact, định lý Peter-Weyl chứng minh biểu diễn đơn nguyên tối giản có hữu hạn chiều và đối ngẫu đơn nguyên là rời rạc. Ví dụ, nếu G là nhóm tròn S1, thì định trị là số nguyên, và đối ngẫu là được cho bởi vành số nguyên \mathbb{Z}.

Đối với nhóm G không compact, việc xác định biểu diễn nào đơn nguyên là mơ hồ. Mặc dù biểu diễn đơn nguyên tối giản phải được "thừa nhận" (là mô-đun Harish-Chandra) và việc xác định biểu diễn được thừa nhận nào có dạng hàm bán song tuyến tính bất biến không suy biến (nondegenerate invariant sesquilinear form), việc phát hiện khi nào hàm này xác định dương (positive definite) vẫn là rất khó. Dù là cho các nhóm tương đối khoẻ mạnh (well-behaved) như nhóm Lie nửa đơn giản thực (đề cập bên dưới), một phương pháp hiệu quả để mô tả đối ngẫu đơn nguyên vẫn còn là 1 vấn đề mở quan trọng trong lý thuyết biểu diễn. Nó đã được giải cho nhiều nhóm cụ thể, chẳng hạn như SL(2,R) và nhóm Lorentz.

Giải tích điều hoà

Đối ngẫu giữa nhóm tròn S1 vành số nguyên \mathbb{Z}, hay tổng quát hơn, giữa hình xuyến Tn\mathbb{Z}^n được biết đến 1 cách sâu sắc trong giải tích dưới danh nghĩa là lý thuyết chuỗi Fourier, và tương tự, biến đổi Fourier đã chỉ ra không gian định trị trên trường vectơ thực là không gian vectơ đối ngẫu. Do đó lý thuyết biểu diễn đơn nguyên và giải tích điều hoà có mối liên hệ mật thiết, và giải tích điều hoà trừu tượng là sự khai thác mối liên hệ này bằng cách phát triển giải tích hàm trên các nhóm tôpô compact địa phương cùng các không gian có liên quan. và định lý Peter-Weyl. Nhiều nhóm quan trọng trong vật lý và hoá học là nhóm Lie, và lý thuyết biểu diễn của nó đóng vai trò quyết định trong việc ứng dụng lý thuyết nhóm vào các lĩnh vực đó.

Lý thuyết biểu diễn của nhóm Lie có thể được phát triển trước tiên là phải xét đến nhóm compact, là nơi mà lý thuyết biểu diễn compact được áp dụng. Lý thuyết này có thể được mở rông thành biểu diễn vô hạn chiều của nhóm Lie nửa đơn giản dựa vào mẹo đơn nguyên của Weyl: mỗi nhóm Lie nửa đơn giản thực G đều có 1 dạng phức hoá, là 1 nhóm Lie phức GC, và nhóm Lie phức này hó 1 nhóm con compact cực đại K. Biểu diễn hữu hạn chiều của G gần như tương ứng với biễu diễn của K.

Một cách tổng quát, 1 nhóm Lie là 1 tích nửa trực tiếp của 1 nhóm Lie giải được và 1 nhóm Lie nửa đơn giản (khai triển Levi).

Cũng như nhóm Lie, đại số Lie có 1 khai triển Levi thành các thành phần nửa đơn giản và thành phần giải được, với lý thuyết biểu diễn của đại số Lie giải được về mặt tổng quát là khó khăn. Ngược lại, biểu diễn hữu hạn chiều của đại số Lie nửa đơn giản hoàn toàn dễ hiểu sau công trình của Élie Cartan. Một biểu diễn của 1 đại số Lie nửa đơn giản \mathfrak{g} được khảo sát bằng cách chọn một đại số con Cartan, cơ bản là 1 đại số con cực đại \mathfrak{h} của \mathfrak{g} mà hoán tử Lie bằng 0 ("abel" - "giao hoán") trên đó. Biểu diễn của \mathfrak{g} của thể được khai triển thành không gian cân, là không gian riêng cho tác dụng của \mathfrak{h} và tương tự vi phân của định trị. Cấu trúc của đại số Lie nửa đơn giản giúp đơn giản hoá việc phân tích các biểu diễn để dễ dàng biết được tổ hợp của các cân khả dĩ có thể xuất hiện.

Đại số Lie vô hạn chiều

Có nhiều lớp đại số Lie vô hạn chiều mà biểu diễn của nó đã đuọc nghiên cứu. Trong số đó, 1 lớp quan trọng là đại số Kac-Moody. Chúng được đặt tên theo Victor Kac và Robert Moody, 2 nhà toán học cùng khám phá nó ra 1 cách độc lập. Những đại số này tổng quát hoá đại số Lie nửa đơn giản hữu hạn chiều và mang nhiều tính chất tổ hợp chung. Điều này có nghĩa là chúng có 1 lớp các biểu diễn có cùng 1 cách hiểu với đại số Lie nửa đơn giản.

Đại số Lie afin là 1 trường hợp đặc biệt của đại số Kac-Moody, có tầm quan trọng nhất định trong toán học và vật lý lý thuyết, đặc biệt là lý thuyết trường bảo giác (CFT) và lý thuyết các mô hình giải được chính xác (mô hình khả tích đầy đủ). Kac đã khám phá ra 1 chứng minh tuyệt vời cho một số hằng đẳng thức tổ hợp nhất định, các hằng đẳng thức Macdonald, dựa trên lý thuyết biểu diễn của đại số afin Kac-Moody.

Siêu đại số Lie

Siêu đại số Lie là những sự tổng quát hoá đại số Lie sao cho không gian vectơ có \mathbb{Z}_2-grading, đối xứng lệch và hằng đẳng thức Jacobi của hoán tử Lie bị thay đổi dấu. Lý thuyết biểu diễn của chúng giống với lý thuyết biểu diễn của đại số Lie.

Nhóm đại số tuyến tính

Nhóm đại số tuyến tính (hay tổng quát hơn, scheme nhóm afin) là tương tự của nhóm Lie trong hình học đại số, nhưng trên các trường tổng quát hơn như \mathbb{R} hoặc \mathbb{C}. Cụ thể, trên các trường hữu hạn, nó phát sinh các "nhóm hữu hạn kiểu Lie" Mặc dù các nhóm đại số tuyến tính có lớp rất gần với nhóm Lie, lý thuyết biểu diễn của nó là khác (và được biết đến rất ít) và yêu cầu những kỹ thuật khác, do tôpô Zarisky tương rối yếu, và các kỹ thuật giải thích không còn khả năng sử dụng.

Lý thuyết bất biến

Lý thuyết bất biến nghiên cứu tác dụng lên cá đa tạp đại số từ quan điểm ảnh hưởng của chúng lên hàm số, vốn là biểu diễn của nhóm. Theo cách cổ điển, lý thuyết này trả lời cho câu hỏi làm sao để mô tả rõ ràng các hàm đa thức không đổi, hay bất biến, dưới biến đổi từ 1 nhóm tuyến tính. Hướng tiếp cận hiện đại khảo sát phép khai triển những biểu diễn này thành tối giản.

Lý thuyết bất biến của các nhóm vô hạn gắn liền với sự phát triển của đại số tuyến tính, đặc biệt là các lý thuyết về hàm bậc hai và định thức. Một vấn đề nữa có ảnh hưởng chung mạnh mẽ là hình học xạ ảnh, nơi mà lý thuyết bất biến có thể được dùng để hình thành lĩnh vực này. Trong những năm 1960, David Mumford đã mang đến lĩnh vực này sức sống mới nhờ vào lý thuyết bất biến hình học của ông ấy.

Lý thuyết biểu diễn của các nhóm Lie nửa đơn giản bắt nguồn từ lý thuyết bất biến Những phát triển hiện đại đã kết nối lý thuyết biểu diễn và lý thuyết bất biến đến nhiều lĩnh vực đa dạng như nhóm hoàn chỉnh (holonomy), toán tử vi phân, và lý thuyết hàm đa phức biến.

Hàm tự đẳng cấu và lý thuyết số

Hàm tự đẳng cấu là sự tổng quát hoá của hàm mô-đun thành hàm giải tích tổng quát hơn, có thể là hàm đa phức biến, với những tính chất biến đổi tương tự. Sự tổng quát hoá này thay thế nhóm mô-đun PSL2(R) và 1 nhóm đồng dư con được chọn bằng 1 nhóm Lie nửa đơn giản G và 1 nhóm rời rạc con \Gamma. Cũng như hàm mô-đun có thể được coi là hàm vi phân của 1 không gian thương của không gian nửa trên H=PSL_2(\mathbb{R})/SO(2), hàm tự đẳng cấu có thể được coi là hàm vi phân (hoặc cấu trúc tương tự) trên \Gamma\backslash G/K, trong đó K (thường) là 1 nhóm compact con cực đại của G. Tuy nhiên cần phải lưu ý vì không gian thương thường có các điểm kỳ dị. Không gian thương của 1 nhóm Lie nửa đơn giản cho bởi 1 nhóm compact con là 1 không gian đối xứng, do đó lý thuyết hàm tự đồng cấu liên hệ mật hiết với giải tích điều hoà trong không gian đối xứng.

Trước khi có sự phát triển của lý thuyết tổng quát, nhiều trường hợp đặc biệt đã được nghiên cứu chi tiết, bao gồm hàm mô-đun Hilbert và hàm mô-đun Siegel. Những kết quả quan trọng trong lý thuyết này bao gồm công thức vết Selberg và sự cụ thể hoá định lý Riemann-Roch của Robert Langlands có thể được áp dụng để tính số chiều của không gian các hàm tự đồng cấu. Khái niệm "biểu diễn tự đồng cấu" được đưa ra sau đó đã được chứng minh có giá trị to lớn trong việc giải quyết các bài toán mà G là 1 nhóm đại số, và được xử lý như là nhóm đại số adele. Kết quả của nó là sự phát triển của cả một triết lý mới gọi là chương trình Langlands xung quanh những mối quan hệ giữa biểu diễn và các tính chất lý thuyết số của hàm tự đẳng cấu.

Đại số kết hợp

Theo 1 cách nào đó, biểu diễn đại số kết hợp tổng quát hoá cả biểu diễn nhóm lẫn biểu diễn đại số Lie. Một biểu diễn của 1 nhóm tạo ra 1 biểu diễn của 1 vành nhóm hoặc đại số nhóm tương ứng, trong khi biểu diễn của 1 đại số Lie là tương ứng qua lại với biểu diễn của đại số bao phổ quát (universal enveloping algebra). Tuy nhiên, lý thuyết biểu diễn của đại số kết hợp tổng quát không có tất cả tính chất đẹp như lý thuyết biểu diễn của nhóm và đại số Lie.

Lý thuyết mô-đun

Khi xét biểu diễn của đại số kết hợp, trường cơ sở có thể không xét đến, và đơn giản là xem đại số kết hợp như 1 vành, và biểu diễn của nó là module. Cách tiếp cận này đã gặt hái được nhiều thành quả kinh ngạc: rất nhiều kết quả trong lý thuyết biểu diễn có thể được diễn giải thành các trường hợp đặc biệt của mô-đun trên vành.

Đại số Hopf và nhóm lượng tử

Đại số Hopf cung cấp 1 phương thức cải tiến lý thuyết biểu diễn của đại số kết hợp, trong khi vẫn duy trì lý thuyết biểu diễn của nhóm và đại số Lie như là các trường hợp đặc biệt. Cụ thể, tích tenxơ của 2 biểu diễn được xem là là 1 biểu diễn, không gian vectơ đối ngẫu cũng vậy.

Đại số Hopf gắn ghép với các nhóm có cấu trúc đại số giao hoán, và do đó đại số Hopf còn được gọi là nhóm lượng tử, mặc dù thuật ngữ này thường bị hạn chế cho một vài đại số Hopf nhất định xuất hiện từ sự biến dạng của các nhóm hoặc đại số bao phổ quát của chúng. Lý thuyết biểu diễn của nhóm lượng tử đã được nhiều hiểu biết đáng kinh ngạc cho lý thuyết biẻu diễn của nhsom Lie và đại số Lie, chẳng hạn như bộ cơ sở kết tinh của Kashiwara.

Tổng quát hoá

Biểu diễn lý thuyết tập hợp

Một biểu diễn lý thuyết tập hợp (còn được gọi là nhóm tác dụng hay biểu diễn hoán vị) của 1 nhóm G trên tập hợp X được cho bởi 1 hàm \rho từ G đến XX, là tập hợp các hàm số từ X đến X, sao cho với mọi g1, g2 trong G và mọi x trong X:

\rho(1)[x]=x
\rho(g_1G_2)[x]=\rho(g_1)[\rho(g_2)[x]]
Điều kiện này cùng với những tiên đề cho 1 nhóm hàm ý rằng \rho(g) là 1 song ánh (hoặc hoán vị) với mọi g trong G. Nên 1 biểu diễn hoán vị có thể được định nghĩa tương đương với 1 phép đồng cấu nhóm từ G đến nhóm đối xứng SX của X.

Biểu diễn trong những phạm trù khác

Mọi nhóm G có thể được xem là 1 phạm trù có 1 cấu trúc; các cấu xạ trong phạm trù này chỉ là phần tử G. Gọi C là 1 phạm trù bất kỳ, 1 biểu diễn của G trong C là 1 hàm tử từ G đến C. 1 hàm tử như vậy chọn ra 1 cấu trúc X trong C và 1 phép đồng cấu nhóm từ G đến Aut(X) là nhóm tự đẳng cấu của X.

Trong trường hợp C là VectF, là phạm trù các không gian vectơ trên trường F, định nghĩa này tương đương với biểu diễn tuyến tính. Cũng như vậy, 1 biểu diễn lý thuyết tập hợp là 1 biểu diễn của G trong phạm trù các tập hợp.

Một ví dụ khác là về phạm trù các không gian tôpô Top. Các biểu diễn trong Top là phép đồng cấu từ G đến nhóm đồng phôi của 1 không gian tôpô X.

Hai loại biểu diễn liên quan chặt chẽ đến biểu diễn tuyến tính là:

  • biểu diễn xạ ảnh: trong phạm trù các không gian xạ ảnh. Những biểu diễn này có thể được hiểu là "biểu diễn tuyến tính theo biến đổi vô hướng."
  • biểu diễn afin: trong phạm trù các không gian afin. Ví dụ, nhóm Euclide tác dụng afin lên không gian Euclide.

Biểu diễn phạm trù

Vì nhóm là phạm trù, nên biểu diễn có thể được áp dụng vào những phạm trù khác. Sự tổng quát hoá đơn giản nhất là cho monoid, vốn là phạm trù có 1 cấu trúc. Nhóm là monoid khi mỗi cấu xạ đều khả nghịch. Thông thường các monoid đều có biểu diễn trong mọi phạm trù. Trong phạm trù của các tập hợp, nó được thay bằng tác dụng monoid, nhưng trên không gian vectơ và các cấu trúc khác thì biểu diễn monoid có thể được nghiên cứu.

Tổng quát hơn, giả thiết phạm trù chỉ có 1 cấu trúc có thể được giảm tải. Tổng quát hoá hoàn toàn, nó trở thành lý thuyết hàm tử giữa các phạm trù.

Một trường hợp đặc biệt ảnh hưởng sâu sắc đến lý thuyết biểu diễn, đó là lý thuyết biểu diễn của quiver. Quiver đơn giản là 1 đồ thị có hướng (và được phép có nhiều vòng lặp và mũi tên), nhưng nó cũng có thể được định nghĩa là phạm trù (và thậm chí là 1 đại số) dựa vào đường đi trên đồ thị. Biểu diễn của phạm trù/đại số như vậy đã khai sáng nhiều khía cạnh của lý thuyết biểu diễn, chẳng hạn như trong một số trường hợp, bài toán sử dùng lý thuyết biểu diễn phi nửa đơn giản để khảo sát 1 nhóm có thể được rút gọn thành bài toán sử dụng lý thuyết biểu diễn **nửa đơn giản** để khảo sát 1 quiver.

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
phải|nhỏ|300x300px| Biểu diễn của một [[Nhóm (toán học)|nhóm "hành động" trên một đối tượng. Các ví dụ đơn giản nhất là cách các đối xứng của một đa giác thông thường, bao gồm các phép
**Biểu diễn tri thức và suy luận** (**Knowledge representation and reasoning**, **KRR**, **KR&R**, **KR²**) là lĩnh vực của trí tuệ nhân tạo (AI) tập trung vào việc biểu diễn thông tin về thế giới dưới
**Khoa học máy tính lý thuyết** () là một tập hợp con của khoa học máy tính và toán học tập trung vào nhiều chủ đề toán học hơn của điện toán và bao gồm
Trong toán học và đại số trừu tượng, **lý thuyết nhóm** nghiên cứu về cấu trúc đại số như nhóm. **Nhóm** là lý thuyết trung tâm của đại số trừu tượng, những cấu trúc đại
**Lý thuyết trò chơi**, hoặc gọi **đối sách luận**, **lí luận ván cờ**, là một phân nhánh mới của toán học hiện đại, cũng là một môn học trọng yếu của vận trù học, tác
Khái niệm của vòng phản hồi dùng để điều khiển hành vi động lực của hệ thống: đây là phản hồi âm, vì giá trị cảm biến (sensor) bị trừ đi từ giá trị mong
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
nhỏ|[[Đồ thị Cayley của nhóm tự do có hai phần tử sinh. Đây là nhóm hyperbol có biên Gromov là tập Cantor. Tương tự với đồ thị Cayley, nhóm hyperbol và biên của nó là
**Lý thuyết độ phức tạp tính toán** (tiếng Anh: _computational complexity theory_) là một nhánh của lý thuyết tính toán trong lý thuyết khoa học máy tính và toán học tập trung vào phân loại
Trong hình học đại số và vật lý lý thuyết, **đối xứng gương** là mối quan hệ giữa các vật thể hình học được gọi là những đa tạp Calabi-Yau. Các đa tạp này có
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
**Lý thuyết mã hóa** là nghiên cứu về các đặc tính của mã và khả năng thích ứng với các ứng dụng cụ thể của chúng. Mã được sử dụng cho nén dữ liệu, mật
**Lý thuyết về ràng buộc** (TOC) là một mô hình quản lý mà quan sát bất kỳ hệ thống quản lý nào bị giới hạn trong việc đạt được nhiều mục tiêu hơn bởi một
[[Hàm Weierstrass, một loại hình phân dạng mô tả một chuyển động hỗn loạn]] phải||Quỹ đạo của hệ Lorenz cho các giá trị _r_ = 28, σ = 10, _b_ = 8/3 **Thuyết hỗn loạn**
:_Bài này chỉ viết về các định nghĩa cơ bản. Để hiểu rộng hơn, xin xem lý thuyết đồ thị. Về ý nghĩa biểu diễn hàm số trên hệ tọa độ, xem đồ thị hàm
**Lý thuyết phiếm hàm mật độ** (tiếng Anh: _Density Functional Theory_) là một lý thuyết được dùng để mô tả các tính chất của hệ electron trong nguyên tử, phân tử, vật rắn,... trong khuôn
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
phải|khung|Một cây có dán nhãn với 6 đỉnh và 5 cạnh **Cây** là khái niệm quan trọng trong lý thuyết đồ thị, cấu trúc dữ liệu và giải thuật. Cây là một đồ thị mà
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
thumb|**[[Phép tính lambda** là một hệ thống hình thức để định nghĩa hàm, ứng dụng hàm và đệ quy được Alonzo Church đề xuất vào những năm 193x.]] **Lý thuyết ngôn ngữ lập trình** (thường
**Lý thuyết thông tin** là một nhánh của toán học ứng dụng và kĩ thuật điện nghiên cứu về đo đạc lượng thông tin. Lý thuyết thông tin được xây dựng bởi Claude E. Shannon
phải|nhỏ|200x200px| Giản đồ biểu diễn một phạm trù với các đối tượng _X_, _Y_, _Z_ và các cấu xạ _f_, _g_, _g_ ∘ _f_. (Ba cấu xạ đồng nhất 1 _X_, 1 _Y_ và 1
nhỏ|Các vectơ mật độ dòng điện xác suất cảm ứng từ tính được tính toán bằng phương pháp lượng tử trong benzen. **Hóa học lý thuyết** là một nhánh của hóa học trong đó phát
Trong lý thuyết trò chơi, **chiến lược **của người chơi là bất kì lựa chọn nào mà người chơi có thể thực hiện, trong bối cảnh kết quả thu được không chỉ phụ thuộc vào
Trong hóa học **lý thuyết liên kết hóa trị** (tiếng Anh: VB, _Valence Bond_) là một trong hai lý thuyết cơ bản, cùng với lý thuyết quỹ đạo phân tử (MO, _Molecular Orbital_) được phát
thumb|Lý thuyết về dự định hành vi **Lý thuyết hành vi có kế hoạch hay lý thuyết hành vi hoạch định** (Tiếng Anh: **The Theory of Planning Behaviour**) là một lý thuyết thể hiện mối
**Lý thuyết thông tin thuật toán** là một lĩnh vực của lý thuyết thông tin và khoa học máy tính liên quan đến mối quan hệ giữa tính toán và thông tin. Theo Gregory Chaitin,
nhỏ|Bìa cuốn sách _Homotopy Type Theory: nền tảng thống nhất của toán học_. Trong logic toán và khoa học máy tính, **lý thuyết hình thái đồng luân** (tiếng Anh: **homotopy type theory**, **HoTT** ) đề
Trong lý thuyết tập hợp, **phần bù** hay **bù** của tập hợp (toán học) thường được ký hiệu là (hoặc ), là tập hợp các phần tử không nằm trong . Khi tất cả các
Trong lý thuyết tập hợp và các ứng dụng của nó quanh toán học, **lớp** là họ của các tập (và đôi khi trên cả các đối tượng toán học khác) và được định nghĩa
Trong lý thuyết trò chơi, **trận chiến giới tính (Battle of the sexes)** là một trò chơi phối hợp giữa hai người chơi. Hãy tưởng tượng, một cặp đôi hẹn hò gặp nhau buổi tối,
Trong toán học, **lý thuyết nhóm tổ hợp** nghiên cứu các nhóm tự do, và khái niệm của biểu diễn của nhóm bằng các phần tử sinh và các quan hệ. Nó được sử dụng
Trong đại số, **lý thuyết vành** là các nghiên cứu về vành—các cấu trúc đại số trong đó phép cộng và phép nhân được định nghĩa và có các thuộc tính tương tự như các
**Các lý thuyết về nguyên nhân của sự nghèo đói** là nền tảng cho các chiến lược xóa đói giảm nghèo. Trong khi ở các quốc gia phát triển, sự nghèo đói thường bị coi
**Trường học điện ảnh và truyền hình thuộc Học viện nghệ thuật biểu diễn tại Praha** ( hay viết tắt là **FAMU**) là một trường học điện ảnh tại Praha, Cộng hòa Séc, được thành
phải|nhỏ|280x280px|Hàm đặc trưng của một biến ngẫu nhiên với phân phối đều _U_(–1,1). Hàm này là giá trị thực bởi vì nó tương ứng với một biến ngẫu nhiên đối xứng qua gốc; tuy nhiên
Trong lý thuyết điều khiển tự động, một **bộ điều khiển** là một thiết bị giám sát và tác động vào các điều kiện làm việc của một hệ động học cho trước. Các điều
Việc tìm kiếm một lý thuyết lượng tử của trường hấp dẫn, qua đó tìm hiểu các đặc điểm của không-thời gian, lượng tử vẫn là một vấn đề mở. Một trong những hướng tiếp
Trong lý thuyết xác suất, một **biến cố** (_event_) là một tập các kết quả đầu ra (_outcomes_) (hay còn gọi là một tập con của không gian mẫu) mà tương ứng với nó người
Jeffrey Masin, "ban nhạc một người" (_One-man band_), một người biễu diễn đường phố tại [[thành phố New York với những nhạc cụ của một ban nhạc]] **Nghệ thuật biểu diễn trên đường phố** hoặc
**Hamilton **của lý thuyết điều khiển tối ưu được phát triển bởi Lev Pontryagin như là một phần của nguyên lý cực đại của ông. Nó được lấy cảm hứng từ, nhưng là khác biệt
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
**Học viện nghệ thuật biểu diễn tại Praha** ( hay viết tắt là **AMU**) là một trường đại học nằm ở trung tâm thủ đô Praha, Cộng hòa Séc chuyên về các lĩnh vực âm
Trong cơ học lượng tử, **lý thuyết nhiễu loạn** là một tập hợp các sơ đồ gần đúng liên quan trực tiếp đến nhiễu loạn toán học để mô tả một hệ lượng tử phức
nhỏ|360x360px|Giá trị điện thế màng _v (t)_ đơn vị milivôn (mV) theo mô hình Hodgkin–Huxley, biểu đồ biểu diễn sự chuyển đổi từ trạng thái tĩnh (điện thế nghỉ) sang trạng thái động (điện thế
Trong Lý thuyết thông tin, **Định lý mã hóa trên kênh nhiễu** (_tiếng Anh: noisy-channel coding theorem_) đề xuất rằng, cho dù một kênh truyền thông có bị ô nhiễm bởi nhiễu âm bao nhiêu
Trong vật lý hạt, **điện động lực học lượng tử** (**QED**) là lý thuyết trường lượng tử tương đối tính của điện động lực học. Về cơ bản, nó miêu tả cách ánh sáng và
**Lý thuyết nhiễu loạn** là phương pháp toán học để tìm ra nghiệm gần đúng cho một bài toán, bằng cách xuất phát từ nghiệm chính xác của một bài toán tương tự đơn giản