✨Lý thuyết tập hợp

Lý thuyết tập hợp

thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]]

Lý thuyết tập hợp (tiếng Anh: set theory) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.

Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra các nghịch lý trong lý thuyết tập không hình thức, đã có nhiều hệ tiên đề được đề nghị vào đầu thế kỷ thứ 20, trong đó có các tiên đề Zermelo–Fraenkel, với tiên đề chọn là nổi tiếng nhất.

Ngôn ngữ của lý thuyết tập hợp được dùng trong định nghĩa của gần như tất cả các đối tượng toán học, như hàm số, và các khái niệm lý thuyết tập hợp được đưa vào nhiều chương trình giảng dạy toán học. Các sự kiện cơ bản về tập hợp và phần tử trong tập hợp có thể được mang ra giới thiệu ở cấp tiểu học, cùng với sơ đồ Venn, để học về tập hợp các đối tượng vật lý thường gặp. Các phép toán cơ bản như hội và giao có thể được học trong bối cảnh này. Các khái niệm cao hơn như Lực lượng là phần tiêu chuẩn của chương trình toán học của sinh viên đại học.

Lý thuyết tập hợp, được hình thức hóa bằng lôgic bậc nhất (first-order logic), là phương pháp toán học nền tảng thường dùng nhất. Ngoài việc sử dụng nó như một hệ thống nền tảng, lý thuyết tập hợp bản thân nó cũng là một nhánh của toán học, với một cộng đồng nghiên cứu tích cực. Các nghiên cứu mới nhất về lý thuyết tập hợp bao gồm nhiều loại chủ đề khác nhau, từ cấu trúc của dòng số thực đến nghiên cứu tính nhất quán của bản số lớn.

Lịch sử

thumb|Georg Cantor

Các chủ đề về toán học thường xuất hiện và phát triển thông qua sự tương tác giữa các nhà nghiên cứu. Tuy nhiên, lý thuyết tập hợp được tìm thấy năm 1874 bởi Georg Cantor thông qua bài viết: "On a Characteristic Property of All Real Algebraic Numbers".

Thế kỷ 19

[[Tập tin:Veranschaulichung einer Menge.svg|thumb|Tập hợp như là một thu góp trong tư tưởng các đối tượng có quan hệ nào đó với nhau.
Cái trống là phần tử của tập hợp
Cuốn sách không phải là phần tử của tập hợp.]]

Lý thuyết tập hợp được sáng lập bởi Georg Cantor trong những năm 1874 đến năm 1897. Thay cho thuật ngữ "tập hợp", ban đầu ông ta đã sử dụng những từ như "biểu hiện" (inbegriff) hoặc "sự đa dạng" (Mannigfaltigkeit); Về tập hợp và Lý thuyết tập hợp, ông chỉ nói sau đó. Năm 1895, ông đã diễn tả định nghĩa sau:

Cantor phân loại các tập hợp, đặc biệt là những tập hợp vô hạn, theo Lực lượng của chúng. Đối với tập hợp hữu hạn, đây là số lượng các phần tử của chúng. Ông gọi hai tập hợp " có lực lượng bằng nhau" khi chúng được ánh xạ song ánh với nhau, tức là khi có một mối quan hệ một-một giữa các phần tử của chúng. Cái được định nghĩa là sự đồng nhất lực lượng là một quan hệ tương đương, và một lực lượng hay số phần tử của một tập hợp M theo Cantor, là lớp tương đương của các tập hợp có lực lượng bằng M. Ông là người đầu tiên quan sát thấy rằng có những lực lượng vô hạn khác nhau. Tập hợp các số tự nhiên, và tất cả các tập hợp có lực lượng bằng nó, được Cantor gọi là 'Tập hợp đếm được, tất cả các tập hợp vô hạn khác được gọi là tập hợp không đếm được.

; Các kết quả quan trọng từ Cantor:

  • Tập hợp của số tự nhiên, số hữu tỉ (lập luận chéo đầu tiên của Cantor) và số đại số là đếm được và có lực lượng bằng nhau.
  • Tập hợp số thực có lực lượng lớn hơn so với các số tự nhiên, đó là không đếm được (luận chéo thứ hai của Cantor).
  • Tập hợp của tất cả các tập hợp con của một tập hợp M luôn luôn có lực lượng lớn hơn là M , mà còn được gọi là định lý Cantor.
  • Từ bất kỳ hai tập hợp có ít nhất một tập hợp cùng lực lượng với một tập hợp con của tập hợp kia.
  • Có rất nhiều lực lượng của tập hợp không đếm được.

Cantor gọi Giả thiết continuum là "có một lực lượng ở giữa tập hợp các số tự nhiên và tập hợp các số thực " Ông đã cố gắng để giải quyết, nhưng không thành công. Sau đó nó bật ra rằng vấn đề này trên nguyên tắc không quyết định được.

Ngoài Cantor, Richard Dedekind là một nhà tiên phong quan trọng của lý thuyết về lý thuyết tập hợp. Ông đã nói về các "hệ thống" thay vì tập hợp và phát triển một cấu trúc lý thuyết tập hợp của các con số thực vào năm 1872, một số lượng lý thuyết xây dựng số thực [2] và 1888 nói về tiên đề hóa lý thuyết tập hợp các con số tự nhiên. Ông là người đầu tiên tạo ra công thức tiên đề Axiom of extensionality của lý thuyết tập hợp.

Ngay từ năm 1889, Giuseppe Peano, người đã miêu tả tập hợp là các tầng lớp, đã tạo ra cách tính toán bằng công thức logic các tầng lớp đầu tiên làm cơ sở cho số học của ông với các tiên đề Peano, mà ông đã mô tả lần đầu tiên trong một ngôn ngữ lý thuyết tập hợp chính xác. Do đó ông đã phát triển cơ sở cho ngông ngữ công thức ngày nay của lý thuyết tập hợp và giới thiệu nhiều biểu tượng được phổ biến ngày nay, đặc biệt là ký hiệu phần tử \in, được đọc là là "phần tử của". Trong khi đó \in là chữ viết thường của ε (epsilon) của từ ἐστί (tiếng Hy Lạp: "là").

Gottlob Frege đã cố gắng đưa ra một lý giải lý thuyết tập hợp khác của lý thuyết về số học vào năm 1893. Bertrand Russell đã phát hiện ra mâu thuẫn của nó vào năm 1902, được biết đến như là Nghịch lý Russell. Sự mâu thuẫn này và các mâu thuẫn khác nảy sinh do sự thiết lập tập hợp không hạn chế, đó là lý do tại sao dạng thức ban đầu của lý thuyết tập hợp sau này được gọi là lý thuyết tập hợp ngây thơ. Tuy nhiên, định nghĩa của Cantor không có ý muốn nói tới một lý thuyết tập hợp ngây thơ như vậy, như chứng minh của ông về loại tất cả là Nichtmenge cho thấy bởi nghịch lý Cantor thứ hai [6].

Học thuyết của Cantor về lý thuyết tập hợp hầu như không được công nhận bởi những người đương thời về vai trò quan trọng của nó, và không được coi là bước tiến cách mạng, mà đã bị một số các nhà toán học như Leopold Kronecker không chấp nhận. Thậm chí nhiều hơn, nó còn bị mang tiếng khi các nghịch lý được biết tới, ví dụ như Henri Poincaré, chế diễu, "Logic không còn hoàn toàn, bây giờ nó tạo ra những mâu thuẫn."

Thế kỷ 20

Trong thế kỷ XX, những ý tưởng của Cantor tiếp tục chiếm ưu thế; đồng thời, trong Logic toán, một lý thuyết Axiomatic Quantum đã được thiết lập, qua đó có thể vượt qua các mâu thuẫn hiện thời.

Năm 1903/1908 Bertrand Russell phát triển Type theory của mình, trong đó tập hợp luôn luôn có một kiểu cao hơn các phần tử của chúng, do đó sự hình thành các tập hợp có vấn đề sẽ không thể xảy ra. Ông chỉ ra cách đầu tiên ra khỏi những mâu thuẫn và cho thấy trong "Principia Mathematica" của 1910-1913 cũng là một phần hiệu quả của Type theory ứng dụng. Cuối cùng, tuy nhiên, nó chứng tỏ là không thích hợp với lý thuyết tập hợp của Cantor và cũng không thể vượt qua được sự phức tạp của nó.

Tiên đề lý thuyết tập hợp được phát triển bởi Ernst Zermelo vào năm 1907 ngược lại dễ sử dụng và thành công hơn, trong đó schema of replacement của ông là cần thiết để bổ sung vào. Zermelo thêm nó vào hệ thống Zermelo-Fraenkel năm 1930, mà ông gọi tắt là hệ thống-ZF. Ông đã thiết kế nó cho Urelement mà không phải là tập hợp, nhưng có thể là phần tử của tập hợp và được xem như cái Cantor gọi là "đối tượng của quan điểm của chúng tôi." Lý thuyết tập hợp Zermelo-Fraenkel, tuy nhiên, theo ý tưởng Fraenkel là lý thuyết tập hợp thuần túy mà đối tượng hoàn toàn là các tập hợp.

Tuy nhiên, nhiều nhà toán học thay vì theo một tiên đề hợp lý lại chọn một lý thuyết tập hợp thực dụng, tránh tập hợp có vấn đề, chẳng hạn như những áp dụng của Felix Hausdorff 1914 hoặc Erich Kamke từ năm 1928. Dần dần các nhà toán học ý thức hơn rằng lý thuyết tập hợp là một cơ bản không thể thiếu cho cấu trúc toán học. Hệ thống ZF chứng minh được trong thực hành, vì vậy ngày nay nó được đa số các nhà toán học công nhận là cơ sở của toán học hiện đại; không còn có mâu thuẫn có thể bắt nguồn từ hệ thống ZF. Tuy nhiên, sự không mâu thuẫn chỉ có thể được chứng minh cho lý thuyết tập hợp với tập hợp hữu hạn, chứ không phải cho toàn bộ hệ thống ZF, mà chứa lý thuyết tập hợp của Cantor với tập hợp vô hạn. Theo Gödel's incompleteness theorems năm 1931 một chứng minh về tính nhất quán về nguyên tắc là không thể được. Những khám phá Gödel chỉ là chương trình của Hilbert để cung cấp toán học và lý thuyết tập hợp vào một cơ sở tiên đề không mâu thuẫn được chứng minh, một giới hạn, nhưng không cản trở sự thành công của lý thuyết trong bất kỳ cách nào, vì vậy mà một khủng hoảng nền tảng của toán học, mà những người ủng hộ của Intuitionismus, trong thực tế không được cảm thấy.

Tuy nhiên, sự công nhận cuối cùng của lý thuyết tập hợp ZF trong thực tế trì hoãn trong một thời gian dài. Nhóm toán học với bút danh Nicolas Bourbaki đã đóng góp đáng kể cho sự công nhận này; họ muốn mô tả mới toán học đồng nhất dựa trên lý thuyết tập hợp và biến đổi nó vào năm 1939 tại các lãnh vực toán học chính thành công. Trong những năm 1960, nó trở nên phổ biến rộng rãi rằng, lý thuyết tập hợp ZF thích hợp là cơ sở cho toán học. Đã có một khoảng thời gian tạm thời trong đó lý thuyết số lượng đã được dạy ở tiểu học.

Song song với câu chuyện thành công của thuyết tập hợp, tuy nhiên, việc thảo luận về các tiên đề tập hợp vẫn còn lưu hành trong thế giới chuyên nghiệp. Nó cũng hình thành những lý thuyết tập hợp tiên đề thay thế khoảng năm 1937 mà không hướng theo Cantor và Zermelo-Fraenkel, nhưng dựa trên Lý thuyết kiểu (Type Theory) của Willard Van Orman Quine từ New Foundations (NF) của ông ta, năm 1940 lý thuyết tập hợp Neumann-Bernays-Godel, mà khái quát hóa ZF về các lớp, hay năm 1955, lý thuyết tập hợp Ackermann, khai triển mới định nghĩa tập hợp của Cantor.

Khái niệm và ký hiệu cơ bản

Lý thuyết tập hợp bắt đầu với một quan hệ nhị phân cơ bản giữa một phần tử o và một tập hợp A. Nếu o là một thành viên (hoặc phần tử) của A, ký hiệu o ∈ A được sử dụng. Khi đó ta cũng nói rằng phần tử a thuộc tập hợp A. Vì các tập cũng là các đối tượng, quan hệ phần tử cũng có thể liên quan đến các tập.

Quan hệ giữa các tập hợp

Quan hệ bao hàm

Nếu tất cả các thành viên của tập cũng là thành viên của tập , thì là một '' Tập hợp con của , được biểu thị A \subseteq B, và tập hợp B bao hàm tập hợp A. Ví dụ, } là một tập hợp con của }, và } cũng vậy, nhưng } thì không.

Quan hệ bằng nhau

  • Hai tập hợp A và B được gọi là bằng nhau nếu A là tập hợp con của B và B cũng là tập hợp con của A, ký hiệu A = B.

Theo định nghĩa, mọi tập hợp đều là tập con của chính nó; tập rỗng là tập con của mọi tập hợp. Mọi tập hợp A không rỗng có ít nhất hai tập con là rỗng và chính nó. Chúng được gọi là các tập con tầm thường của tập A. Nếu tập con B của A khác với chính A, nghĩa là có ít nhất một phần tử của A không thuộc B thì B được gọi là tập con thực sự hay tập con chân chính của tập A.

Chú ý rằng 1 và 2 và 3 là các phần tử của tập } nhưng không phải là tập con, các tập con chẳng hạn như {1} không phải là phần tử của tập {1, 2, 3}.

Các phép toán trên các tập hợp

  • Hợp (Union): Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu A \cup B :Ta có A \cup B = {x| x \in A hoặc x \in B}, hợp của {1, 2, 3} và {2, 3, 4} là tập {1, 2, 3, 4}.

  • Giao (Intersection): Giao của hai tập hợp A và B là tập hợp tất cả các phần tử vừa thuộc A, vừa thuộc B, ký hiệu A \cap B :Ta có A \cap B = {x| x \in A và x \in B}, giao của {1, 2, 3} và {2, 3, 4} là tập { 2, 3}.

  • Hiệu (Difference): Hiệu của tập hợp A với tập hợp B là tập hợp tất cả các phần tử thuộc A nhưng không thuộc B, ký hiệu A \setminus B :Ta có: A \ B = {x| x \in A và x \notin B} :Lưu ý, A \ B \ne B \ A

  • Phần bù (Complement): là hiệu của tập hợp con. Nếu A\subsetB thì B \ A được gọi là phần bù của A trong B, ký hiệu CAB (hay CB A)

👁️ 2 | 🔗 | 💖 | ✨ | 🌍 | ⌚
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
**Lý thuyết tập hợp ngây thơ** là bất kỳ lý thuyết nào trong số các lý thuyết tập hợp được sử dụng trong cuộc thảo luận về nền tảng của toán học. Không giống như
Trong lý thuyết tập hợp và các ứng dụng của nó quanh toán học, **lớp** là họ của các tập (và đôi khi trên cả các đối tượng toán học khác) và được định nghĩa
Trong lý thuyết tập hợp, **lý thuyết** **tập hợp** **Zermelo-Fraenkel**, được đặt theo tên của các nhà toán học Ernst Zermelo và Abraham Fraenkel, là một hệ thống tiên đề được đề xuất vào đầu
Trong lý thuyết tập hợp toán học, quan điểm đa vũ trụ có nhiều mô hình của lý thuyết tập hợp, nhưng không có mô hình "tuyệt đối", "chính xác" hay "đúng". Các mô hình
Trong lý thuyết tập hợp, **phần bù** hay **bù** của tập hợp (toán học) thường được ký hiệu là (hoặc ), là tập hợp các phần tử không nằm trong . Khi tất cả các
Một tập hợp hình đa giác trong một [[biểu đồ Euler]] Tập hợp các số thực (R), bao gồm các số hữu tỷ (Q), các số nguyên (Z), các số tự nhiên (N). Các số
nhỏ|phải|Lược đồ Euler biểu diễn
_A_ là tập con của tập _B_ và _B_ là "tập cha" của tập _A_ Trong Toán học, đặc biệt trong lý thuyết tập hợp, tập hợp _A_ là
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
Trong toán học, logic và khoa học máy tính, một **lý thuyết hình thái** hoặc một **hệ hình thái** là một hệ thống hình thức trong đó mọi **đối tượng** đều có một **hình thái**
Trong toán học, đặc biệt là trong lý thuyết tập hợp, **tập hợp lũy thừa** (hay còn gọi là **tập lũy thừa**, **tập hợp các bộ phận**, **tập các bộ phận**, **tập hợp các tập
phải|nhỏ|200x200px| Giản đồ biểu diễn một phạm trù với các đối tượng _X_, _Y_, _Z_ và các cấu xạ _f_, _g_, _g_ ∘ _f_. (Ba cấu xạ đồng nhất 1 _X_, 1 _Y_ và 1
nhỏ|So sánh lực lượng hai tập hợp **Giả thuyết continuum** hay **bài toán continuum** là một giả thuyết toán học, cho rằng không có tập hợp nào có lực lượng lớn hơn lực lượng của
thumb|**[[Phép tính lambda** là một hệ thống hình thức để định nghĩa hàm, ứng dụng hàm và đệ quy được Alonzo Church đề xuất vào những năm 193x.]] **Lý thuyết ngôn ngữ lập trình** (thường
Các **tập mờ** hay **tập hợp mờ** (tiếng Anh: _Fuzzy set_) là một mở rộng của lý thuyết tập hợp cổ điển và được dùng trong lôgic mờ. Trong lý thuyết tập hợp cổ điển,
nhỏ|phải|upright=0.6|Tập hợp rỗng là tập hợp không chứa phần tử nào cả. upright=0.6|nhỏ|Ký hiệu tập rỗng Trong toán học, và cụ thể hơn là lý thuyết tập hợp, **tập hợp rỗng** (hay còn gọi là
Trong lý thuyết tập hợp, một **tập hợp vô hạn** là một tập hợp mà không phải là một tập hợp hữu hạn. Các tập hợp vô hạn có thể là đếm được hoặc không
nhỏ|Hai tập hợp rời nhau hay hai tập không có phần tử chung. Trong toán học, hai tập hợp gọi là không giao nhau khi chúng không có phần tử nào chung. Tương tự, hai
**Tập hợp đếm được** (hay tập hợp có lực lượng đếm được) trong toán học được định nghĩa là tập hợp có thể thiết lập một đơn ánh vào tập hợp số tự nhiên. Điều
Trong toán học, khái niệm **lực lượng** hay **lực lượng của một tập hợp** dùng để chỉ "số phần tử" có trong tập hợp đó. Ví dụ tập A = {2, 4, 6} có ba
Các **tập hợp tương đương**, còn gọi là **tập hợp đẳng lực**, là các tập hợp mà giữa các phần tử của chúng có thể thiết lập **quan hệ tương đương**, tức quan hệ tương
Trong toán học, một **phân hoạch tập hợp** là một cách nhóm các phần tử của nó thành các tập con không rỗng, theo cách mà mỗi phần tử được chứa trong chính xác một
**Georg Ferdinand Ludwig Philipp Cantor** (;  – 6 tháng 1 năm 1918) là một nhà toán học người Đức, được biết đến nhiều nhất với tư cách cha đẻ của lý thuyết tập hợp, một
thumb|Hình minh họa tiên đề chọn, với mỗi và lần lượt biểu diễn một bình và một viên bi thumb| là một [[họ chỉ số vô hạn các tập hợp với tập chỉ số là
**Lý thuyết trò chơi**, hoặc gọi **đối sách luận**, **lí luận ván cờ**, là một phân nhánh mới của toán học hiện đại, cũng là một môn học trọng yếu của vận trù học, tác
right|thumb|Kí hiệu tập hợp **số thực** (ℝ) Trong toán học, một **số thực** là một giá trị của một đại lượng liên tục có thể biểu thị một khoảng cách dọc theo một đường thẳng
**John von Neumann** (**Neumann János**; 28 tháng 12 năm 1903 – 8 tháng 2 năm 1957) là một nhà toán học người Mỹ gốc Hungary và là một nhà bác học thông thạo nhiều lĩnh
**Lý thuyết độ phức tạp tính toán** (tiếng Anh: _computational complexity theory_) là một nhánh của lý thuyết tính toán trong lý thuyết khoa học máy tính và toán học tập trung vào phân loại
**Lý thuyết về ràng buộc** (TOC) là một mô hình quản lý mà quan sát bất kỳ hệ thống quản lý nào bị giới hạn trong việc đạt được nhiều mục tiêu hơn bởi một
nhỏ|[[Đồ thị Cayley của nhóm tự do có hai phần tử sinh. Đây là nhóm hyperbol có biên Gromov là tập Cantor. Tương tự với đồ thị Cayley, nhóm hyperbol và biên của nó là
Trong toán học và đại số trừu tượng, **lý thuyết nhóm** nghiên cứu về cấu trúc đại số như nhóm. **Nhóm** là lý thuyết trung tâm của đại số trừu tượng, những cấu trúc đại
Trong hình học đại số và vật lý lý thuyết, **đối xứng gương** là mối quan hệ giữa các vật thể hình học được gọi là những đa tạp Calabi-Yau. Các đa tạp này có
Trong toán học, **số nguyên** được định nghĩa một cách thông dụng là một số có thể được viết mà không có thành phần phân số. Ví dụ: 21, 4, 0 và −2048 là các
:_Bài này chỉ viết về các định nghĩa cơ bản. Để hiểu rộng hơn, xin xem lý thuyết đồ thị. Về ý nghĩa biểu diễn hàm số trên hệ tọa độ, xem đồ thị hàm
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
nhỏ|200x200px| Hàm song ánh _f_: _X_ → _Y_, từ tập _X_ đến tập _Y_ chứng tỏ rằng các tập hợp có cùng số lượng, trong trường hợp này hai tập hợp đều có số đếm
**Lý thuyết cân bằng tổng thể** là một nhánh của kinh tế học lý thuyết, được xem là thuộc kinh tế vi mô. Lý thuyết này tìm cách giải thích cung, cầu và giá của
**Kazimierz Kuratowski** (ngày 02 tháng 2 năm 1896 - ngày 18 tháng 6 năm 1980) là một nhà toán học và logic học Ba Lan. Ông là một trong những đại diện hàng đầu của
thumb|Lý thuyết về dự định hành vi **Lý thuyết hành vi có kế hoạch hay lý thuyết hành vi hoạch định** (Tiếng Anh: **The Theory of Planning Behaviour**) là một lý thuyết thể hiện mối
**Số vô hạn** là các số được định nghĩa là _vô hạn_ (transfinite) nếu chúng chỉ lớn hơn số hữu hạn, chứ không phải là vô hạn tuyệt đối (infinity) một cách cần thiết. Người
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
**Lý thuyết thông tin thuật toán** là một lĩnh vực của lý thuyết thông tin và khoa học máy tính liên quan đến mối quan hệ giữa tính toán và thông tin. Theo Gregory Chaitin,
**Các lý thuyết về nguyên nhân của sự nghèo đói** là nền tảng cho các chiến lược xóa đói giảm nghèo. Trong khi ở các quốc gia phát triển, sự nghèo đói thường bị coi
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
Trong lý thuyết xác suất, một **biến cố** (_event_) là một tập các kết quả đầu ra (_outcomes_) (hay còn gọi là một tập con của không gian mẫu) mà tương ứng với nó người
**Lý thuyết thông tin** là một nhánh của toán học ứng dụng và kĩ thuật điện nghiên cứu về đo đạc lượng thông tin. Lý thuyết thông tin được xây dựng bởi Claude E. Shannon
Khái niệm của vòng phản hồi dùng để điều khiển hành vi động lực của hệ thống: đây là phản hồi âm, vì giá trị cảm biến (sensor) bị trừ đi từ giá trị mong
Trong lý thuyết đồ thị, một **lát cắt** là một cách phân chia tập hợp các đỉnh của một đồ thị thành hai tập hợp con không giao nhau. **Tập hợp cắt** của lát cắt