✨Thuật ngữ lý thuyết đồ thị

Thuật ngữ lý thuyết đồ thị

Lưu ý: Danh sách thuật ngữ lý thuyết đồ thị này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài này không trình bày các định nghĩa chính thức của các khái niệm và thuật ngữ này.

trái|Ví dụ một đồ thị đơn với tập đỉnh V = {1, 2, 3, 4, 5, 6} và tập cạnh E = , {1,5}, {2,3}, {2,5}, {3,4}, {4,5}, .

B

*Bậc (degree hoặc valency) :Bậc của đỉnh v trong đồ thị G, ký hiệu dG(v), là số cạnh liên thuộc với v, trong đó, khuyên được tính hai lần. Một đỉnh có bậc 0 là đỉnh cô lập. Đỉnh có bậc 1 là một đỉnh treo hay lá. Trong đồ thị ví dụ, các đỉnh 1 và 3 có bậc là 2, các đỉnh 2, 4 và 5 có bậc bằng 3, đỉnh 6 có bậc 1. :Nếu tập cạnh E là hữu hạn thì tổng giá trị bậc của các đỉnh gọi là bậc của đồ thị. Bậc của đồ thị bằng hai lần số cạnh. Số các đỉnh bậc lẻ luôn là số chẵn.

:Bậc cực đại của đồ thị G, ký hiệu Δ(G), là bậc lớn nhất của các đỉnh trong đồ thị; bậc cực tiểu, δ(G), là bậc nhỏ nhất của các đỉnh trong đồ thị.Ví dụ

:Trong đồ thị có hướng Γ, bậc ngoài dΓ+(v), số cung xuất phát từ đỉnh v(số cung đi ra đỉnh v), và bậc trong dΓ-(v), số cung đi vào đỉnh v. Bậc dΓ(v) của đỉnh v bằng tổng bậc ngoài và bậc trong của đỉnh đó. Bậc ngoài cực đại và cực tiểu được ký hiệu Δ+(Γ) và δ+(Γ); bậc trong cực đại và cực tiểu, Δ-(Γ) và δ-(Γ). Trong ngữ cảnh rõ ràng, có thể bỏ qua chỉ số dưới Γ.

*Bất biến đồ thị (graph invariant) :là một tính chất của một đồ thị G, thường là một số hoặc một đa thức chỉ phụ thuộc vào lớp đẳng cấu của G. Ví dụ: bậc của đồ thị.

C

*Cạnh(Edge): Cạnh nối đỉnh x với đỉnh y là một tập gồm hai phần tử {x,y}, thường được vẽ dưới dạng một đoạn thẳng nối hai đỉnh. Cạnh nối hai đỉnh xy được ký hiệu là xy (không phải xy). Tập cạnh của G thường được ký hiệu là E(G), hoặc E nếu không có nguy cơ hiểu nhầm. **Cạnh có hướng là một cặp đỉnh có thứ tự. Trong mỗi cặp có thứ tự đó, đỉnh thứ nhất được gọi là đỉnh đầu, đỉnh thứ hai là đỉnh cuối. Cạnh vô hướng không quan tâm đến hướng và coi hai đỉnh như nhau. **Cạnh lá: Cạnh nối với một đỉnh lá. **Cạnh cắt: xem Cầu. **Cạnh kề nhau *: Hai cạnh của một đồ thị được xem là kề nhau nếu chúng có một đỉnh chung. Cặp ghép: (matching): một cặp ghép M của đồ thị G = (V,E) là một tập các cạnh đôi một không kề nhau của G. **Cặp ghép hoàn hảo (perfect matching): là cặp ghép phủ tất cả các đỉnh của đồ thị. Nghĩa là mỗi đỉnh của đồ thị đều liên thuộc với đúng một cạnh của cặp ghép. **Cặp ghép lớn nhất, Cặp ghép tối đa: là cặp ghép chứa nhiều cạnh nhất có thể. Có thể có nhiều cặp ghép tối đa. Cấp (order) của một đồ thị là số đỉnh của nó, nghĩa là |V(G)|. Cầu**: là một cạnh mà nếu loại bỏ nó thì đồ thị tăng số thành phần liên thông. *Cây: là một đồ thị đơn liên thông phi chu trình(không có chu trình). **Cây bao trùm(cây khung): là một đồ thị con bao trùm có dạng cây. Chỉ có đồ thị liên thông mới có cây bao trùm. **Cây (có gốc): thường được coi như các đồ thị đơn có hướng phi chu trình với các cung hướng từ phía gốc ra phía lá. Với mỗi cung, đỉnh tại gốc cung được gọi là đỉnh cha hoặc cha, các đỉnh tại điểm cuối của cung được gọi là đỉnh con hoặc con của đỉnh tại gốc cung. **Cây con: một cây con của đồ thị G là một đồ thị con có dạng cây. **Cây k-ary:(ví dụ: nhị phân, tam phân...) là cây có gốc mà mỗi đỉnh trong đều có không quá k con. ::Cây đơn phân chỉ là một đường đi. ::Cây nhị phân là cây mà mỗi đỉnh có không quá 2 con. ::Cây nhị phân đầy đủ là cây mà mỗi đỉnh trong có đúng 2 con.

*Chỉ số clique*: Chỉ số clique ω(G) của đồ thị G là bậc của đồ thị con đầy đủ lớn nhất của G. Chỉ số độc lập: Chỉ số độc lập của đồ thị G, ký hiệu α(G), là kích thước của tập độc lập lớn nhất của G. *Chu trình trong đồ thị: là một đường đi đóng trong đồ thị. Đồ thị chỉ gồm một chu trình với n đỉnh được gọi là đồ thị vòng, ký hiệu Cn, **Chu trình bao trùm: là cách gọi khác của chu trình Hamilton. **Chu trình chẵn: là chu trình có độ dài chẵn. **Chu trình có hướng: là một chu trình đơn mà mọi cung trong đó đều cùng hướng, nghĩa là mọi đỉnh đều có bậc trong và bậc ngoài bằng 1. Có thể gọi đơn giản là chu trình khi ngữ cảnh rõ ràng. **Chu trình đơn: là chu trình đi qua mỗi đỉnh không quá một lần. Trong đồ thị ở hình trên, (1, 5, 2, 1) là một chu trình đơn. Nếu không chỉ rõ, chu trình thường được hiểu là một chu trình đơn. **Chu trình Euler: là chu trình qua tất cả các cạnh, mỗi cạnh đúng một lần. **Chu trình lẻ: là chu trình có độ dài lẻ. *Chu vi nhỏ (girth): Chu vi nhỏ của một đồ thị là độ dài của chu trình đơn ngắn nhất của đồ thị. Chu vi lớn (circumference): Chu vi lớn của một đồ thị là độ dài của chu trình đơn dài nhất của đồ thị. Đối với đồ thị không có chu trình, chu vi lớn và chu vi nhỏ được định nghĩa bằng giá trị vô cùng ∞. Chuỗi bậc (degree sequence): là danh sách các bậc của một đồ thị sắp xếp theo thứ tự giảm dần. (ví dụ, d1d2 ≥ … ≥ dn). Một chuỗi giảm dần các số tự nhiên được coi là hiện thực được** (realizable) nếu nó là chuỗi bậc của một đồ thị nào đó. *Cung: là cạnh có hướng.

D

*Dẫn xuất (induced) :Đồ thị con H của đồ thị G được coi là dẫn xuất nếu: với mỗi cặp đỉnh xy của H, xy là một cạnh của H khi và chỉ khi xy là một cạnh của G. Nếu H được chọn dựa trên tập đỉnh S là tập con của V(G), thì H còn được ký hiệu là G[S] và được coi là dẫn xuất từ _S_.

Đ

*Đẳng cấu :Hai đồ thị GH được coi là đẳng cấu, ký hiệu G ~ H, nếu có một quan hệ tương ứng một-một giữa hai tập đỉnh của hai đồ thị sao cho hai đỉnh của đồ thị G kề nhau khi và chỉ khi các đỉnh tương ứng của chúng trong đồ thị H cũng kề nhau.

*Đỉnh: Xem Đồ thị. Đỉnh được vẽ dưới dạng một nút hoặc một điểm. Tập đỉnh của đồ thị G thường được ký hiệu là V(G), hoặc V khi không có nguy cơ hiểu nhầm. **Đỉnh cha: Xem Cây (có gốc) **Đỉnh con: Xem Cây (có gốc) **Đỉnh cắt (cut vertex): là một đỉnh mà nếu loại bỏ nó thì đồ thị tăng số thành phần liên thông. **Đỉnh gốc: là một đỉnh đặc biệt của cây có gốc. Trong trường hợp này, cây là đồ thị có hướng, đỉnh gốc là đỉnh duy nhất có bậc trong bằng 0. **Đỉnh lá: Đỉnh có bậc 1, còn được gọi là . Thường dùng cho cây có gốc, khi đó lá là đỉnh không có con. **Đỉnh phát (source): là đỉnh có bậc trong bằng 0. **Đỉnh thu (sink): là đỉnh có bậc ngoài bằng 0. **Đỉnh trong* (internal vertex): Đỉnh không phải là đỉnh lá. Đồ thị: Gồm một tập các đỉnh được nối với nhau bằng các cạnh. Xem chi tiết tại Đồ thị (toán học). Nếu không không được chỉ rõ trong ngữ cảnh, đồ thị được hiểu là đồ thị đơn. **Đa đồ thị: Đồ thị có đa cạnh nhưng không có khuyên. Có tài liệu quy định là: đồ thị có đa cạnh và có khuyên. **Đồ thị cha: Một đồ thị cha của G là một đồ thị chứa G với danh nghĩa một đồ thị con. Ta nói rằng đồ thị G chứa đồ thị H nếu có một đồ thị con nào đó của G chính là H hoặc đẳng cấu với H (tùy theo yêu cầu của hoàn cảnh). **Đồ thị chính quy: là đồ thị có bậc của tất cả các đỉnh bằng nhau. **Đồ thị có hướng **Đồ thị có trọng số: Trong đồ thị có trọng số, mỗi cạnh được gắn nhãn là một số, số này được gọi là trọng số của đỉnh. Nói cách khác, đồ thị có trọng số là một đồ thị cùng với một ánh xạ từ tập các cạnh vào tập số thực. Khi không chỉ rõ, một đồ thị luôn được coi là đồ thị không có trọng số. **Đồ thị con: Một đồ thị con của đồ thị G là một đồ thị mà tập cạnh và tập đỉnh của nó là các tập con của các thành phần tướng ứng của G. **Đồ thị con bao trùm (spanning subgraph): Đồ thị con H là một đồ thị con bao trùm của đồ thị G nếu tập đỉnh của H trùng với tập đỉnh của G. Ta nói rằng H bao trùm G. **Đồ thị đầy đủ: Đồ thị đầy đủ bậc n, ký hiệu Kn, là một đồ thị đơn gồm n đỉnh trong đó hai đỉnh bất kỳ đều được nối với nhau bởi một cạnh. Có tất cả n(n-1)/2 cạnh. Đồ thị ví dụ không phải đồ thị đầy đủ. **Đồ thị đơn: là đồ thị không có đa cạnh và không có khuyên. **Đồ thị Euler có hướng: là một đồ thị có hướng mà mỗi đỉnh đều có bậc trong bằng bậc ngoài. '''Đồ thị hai phía: là một đồ thị đặc biệt, trong đó tập các đỉnh có thể được chia thành hai tập không giao nhau thỏa mãn điều kiện không có cạnh nối hai đỉnh bất kỳ thuộc cùng một tập. **Đồ thị hữu hạn: là đồ thị có hữu hạn cạnh và hữu hạn đỉnh. Nếu không được chỉ rõ tính chất, một đồ thị thường được hiểu là hữu hạn. **Đồ thị hữu hạn địa phương: là đồ thị vô hạn trong đó mỗi cạnh đều có bậc hữu hạn. **Đồ thị phẳng là đồ thị có thể được vẽ trên mặt phẳng Euclid sao cho không có hai cạnh nào cắt nhau. Đồ thị ví dụ là đồ thị phẳng. **Đồ thị phi chu trình: là đồ thị không có chu trình. Một đồ thị có hướng là phi chu trình nếu nó không chứa chu trình có hướng. **Đồ thị phổ dụng (universal graph): Đồ thị phổ dụng của một lớp đồ thị K là một đồ thị đơn nhỏ nhất mà mọi đồ thị là phần tử của K đều là đồ thị con của nó. **Đồ thị rỗng: là đồ thị không có cạnh và không có đỉnh. Hoặc, nó là một đồ thị không có cạnh nhưng có một số đỉnh n bất kỳ, khi đó, nó được gọi là đồ thị rỗng n đỉnh. (Không có sự thống nhất giữa các tài liệu). **Đồ thị vòng: là đồ thị chứa một chu trình duy nhất đi qua tất cả các đỉnh, mỗi đỉnh đều có bậc đúng bằng 2. **Đồ thị vô hạn: là đồ thị có vô hạn cạnh hoặc vô hạn đỉnh hoặc cả hai. **Đồ thị vô hướng: là đồ thị gồm toàn các cạnh không có hướng. *Độ dài :Độ dài của một đường đi là số cạnh mà nó đi qua. Đường đi Pn có độ dài n - 1. Trong đồ thị ví dụ, (1, 2, 5, 1, 2, 3) là đường đi có độ dài 5, còn (5, 2, 1) là đường đi đơn có độ dài 2. :_Độ dài của một chu trình_là số cạnh của nó, số này cũng bằng số đỉnh nó đi qua (tính cả bội, nếu một đỉnh được đi qua nhiều lần). Cn có độ dài n. Khác với đường đi, chu trình không được phép có độ dài 0. Các chu trình độ dài 1 là các khuyên. Các chu trình độ dài 2 là các cặp đa cạnh. Trong đồ thị ví dụ, (1, 2, 3, 4, 5, 1) là chu trình độ dài 5.

*Độc lập :Hai đường đi được coi là độc lập nếu chúng không có chung đỉnh nào, ngoại trừ đỉnh đầu và đỉnh cuối. :Một đỉnh cô lập hoặc đỉnh độc lập là đỉnh không liên thuộc với một cạnh nào, cũng có nghĩa là đỉnh có bậc 0. :Một tập độc lập, hay tập ổn định, là tập các đỉnh đôi một không kề nhau. Đồ thị con dẫn xuất từ một tập độc lập là một đồ thị rỗng. Trong ví dụ trên, các đỉnh 1, 3 và 6 hợp thành một tập độc lập; các đỉnh 3, 5 và 6 hợp thành một tập độc lập khác. :Số độc lập (indepndence number) của một đồ thị là số cực đại các đỉnh của tập độc lập ứng với đồ thị đó

*Đồng cấu :Một đồ thị G được coi là đồng cấu với đồ thị H nếu có một ánh xạ từ V(G) tới V(H) sao cho: nếu hai đỉnh kề nhau trong G thì các đỉnh tương ứng của nó cũng kề nhau trong đồ thị H.

*Đường đi (walk/path): là một chuỗi luân phiên giữa đỉnh và cạnh, bắt đầu và kết thúc bởi một đỉnh. Trong đó, mỗi đỉnh là đỉnh đầu cuối của hai cạnh đứng liền trước và liền sau trong chuỗi, các đỉnh đứng liền trước và liền sau một cạnh là các đỉnh đầu cuối của cạnh đó. Khi có hai cạnh giống nhau trên chuỗi có thể loại bỏ bớt các cạnh trùng nhau, sao cho không có cạnh nào của đồ thị cómặt quá một lần trên đường đi. Một đường đi được coi là đónghay một chu trình nếu đỉnh đầu và đỉnh cuối trùng nhau, được coi là mở nếu đỉnh đầu và đỉnh cuối khác nhau. Đường đi qua n đỉnh được ký hiệu là Pn. **Đường đi có hướng: là một đường đi đơn trong đó mọi cung đều theo cùng một hướng, nghĩa là mọi đỉnh trên đó đều có bậc trong và bậc ngoài bằng 1. Trong đồ thị có hướng, đỉnh v được coi là đến được từ đỉnh u nếu có một đường đi có hướng xuất phát từ u và kết thúc tại v. Có thể gọi đơn giản là đường đi khi ngữ cảnh rõ ràng. **Đường đi đơn:là đường đi trong đó mỗi đỉnh chỉ được đi qua nhiều nhất một lần. **Đường đi Euler (Eulerian path): là đường đi qua tất cả các cạnh, mỗi cạnh đúng một lần. Đồ thị ví dụ không có đường đi Euler. **Đường đi Hamilton (Hamiltonian path): là đường đi đơn qua tất cả các đỉnh trong đồ thị. Đồ thị ví dụ có đường đi Hamilton.

G

*Gắn nhãn đồ thị (graph labelling) :Việc gán các nhãn phân biệt (thường là các số) cho các cạnh và đỉnh của đồ thị.

*Gốc :xem Đỉnh gốc.

K

*Kề Hai đỉnh uv được coi là kề nhau, ký hiệu uv, nếu có một cạnh nối chúng. Trong đồ thị ví dụ, các đỉnh 1 và 2 kề nhau, nhưng các đỉnh 2 và 4 không kề.

*Khoảng cách :Khoảng cách dG(u, v) giữa hai đỉnh (không nhất thiết phân biệt uv trong đồ thị G là độ dài đường đi ngắn nhất giữa chúng. Có thể bỏ chỉ số dưới G nếu không sợ hiểu nhầm. Khi uv là một, khoảng cách giữa chúng bằng 0. Khi giữa uv không có đường đi, khoảng cách giữa chúng là vô cùng ∞.

*Khuyên (loop) :Cạnh có hai đầu trùng nhau (cùng một đỉnh).

*Kích thước của đồ thị :Kích thước của một đồ thị là số cạnh của nó, nghĩa là |E(G)|.

L

* :Xem Đỉnh lá.

*Lát cắt đỉnh :là tập các đỉnh mà khi loại bỏ chúng sẽ làm cho đồ thị mất tính liên thông.

*Lát cắt cạnh :là tập tất cả các cạnh có một đầu thuộc tập đỉnh con S và đầu kia thuộc V(G)_S_.

*Liên thông :Nếu giữa hai điểm bất kỳ của một đồ thị đều có thể thiết lập một đường đi từ đỉnh này đến đỉnh kia, đồ thị được coi là liên thông; nếu không, đồ thị được coi là không liên thông. Một đồ thị được coi là hoàn toàn không liên thông nếu không có đường đi giữa hai đỉnh bất kỳ trong đồ thị. Đây chỉ là một cái tên khác để miêu tả một đồ thị rỗng hoặc một tập độc lập. :Một đồ thị có hướng được coi là liên thông mạnh nếu từ mọi đỉnh đều đến được mọi đỉnh khác. Ngược lại, đồ thị có hướng được coi là liên thông yếu nếu đồ thị vô hướng nền tảng của nó là đồ thị liên thông.

*Lưới (còn gọi là mạng, mạng lưới) :Trong một số tài liệu về lý thuyết đồ thị, thuật ngữ lưới (network) được coi là từ đồng nghĩa với đồ thị có trọng số. Một lưới có thể có hướng hoặc vô hướng. Lưới có thể chứa các đỉnh (nút) đặc biệt, chẳng hạn đỉnh phát hoặc đỉnh thu.

M

*Ma trận kề : Một ma trận kích thước n×n, trong đó mỗi phần tử tại dòng i cột j cho biết số cạnh nối từ đỉnh thứ i tới đỉnh thứ j.

N

*Nhân (kernel) :là một tập độc lập ổn định ngoài. Một đồ thị có hướng được gọi là nhân hoàn hảo (kernel perfect) nếu mọi đồ thị con dẫn xuất đều có một nhân.

*Nhúng: (embedding) Phép nhúng thực hiện trên G_1 = (V_1,E_1) (cho kết quả là đồ thị G_2 = (V_2,E_2)) là một hàm đơn ánh từ V_1 tới V_2 sao cho mỗi cạnh trong E_1 tương ứng với một đường đi (các đường đi này đôi một không chung cạnh) trong đồ thị G_2. Một đồ thị được coi là nhúng được* trên một bề mặt nếu khi vẽ đồ thị trên đó, các đỉnh và cạnh của nó có thể được sắp xếp trên đó sao cho không có hai cạnh nào cắt nhau. Nút** (knot) :trong một đồ thị có hướng, nút là một tập các đỉnh và cung với tính chất: mọi đỉnh trong nút đều có cung từ đó đi ra, và mọi cung xuất phát từ các đỉnh trong nút đều có đích là các đỉnh nằm trong nút. Do đó, không thể ra khỏi nút nếu đi theo hướng của các cung. :Trong trường hợp đồ thị là sơ đồ sử dụng tài nguyên (general resource graph), một nút là điều kiện đủ cho deadlock.

*Nút (node) :Trong một số ngữ cảnh, một đỉnh của đồ thị cũng được gọi là một nút. Chẳng hạn, các đỉnh trong một cây có gốc thường được gọi là nút.

P

*Phản cạnh (anti-edge) :Là một cạnh "không tồn tại". :Cho hai đỉnh uv, {u, v} là một phản cạnh của đồ thị G nếu (u, v) không phải là cạnh của G. Nghĩa là: hoặc không có cạnh nào nối hai đỉnh, hoặc chỉ có một cung (v, u) từ v tới u nếu G là đồ thị có hướng.

*Phần bù (complement) :Phần bù \bar{G} của một đồ thị G là một đồ thị có cùng tập đỉnh như G nhưng lại có tập cạnh thỏa mãn điều kiện: xy là một cạnh của \bar{G} khi và chỉ khi xy không phải là cạnh của G.

Q

*Quan hệ liên thuộc :Quan hệ giữa cạnh và đỉnh là một trong hai đầu của cạnh đó.

R

*Rừng : là hợp của các cây; tương đương với một đồ thị phi chu trình.

S

*Sắc số* :Sắc số χ(G) của một đồ thị G là số nhỏ nhất các màu cần thiết để tô màu đồ thị đó, nghĩa là tô màu các đỉnh của nó sao cho hai đỉnh kề nhau có màu khác nhau. Siêu cạnh** (hyperedge) : Là cạnh có thể có số đỉnh đầu cuối tùy ý, có thể lớn hơn 2. Khi không nói rõ, một cạnh luôn được hiểu là có nhiều nhất 2 đỉnh. *Siêu đồ thị (hypergraph) :Đồ thị cho phép có siêu cạnh. Khi không chỉ rõ, đồ thị không bao giờ bị hiểu nhầm là siêu đồ thị

T

*Tập cắt :xem lát cắt đỉnh.

*Tập láng giềng :Tập láng giềng, còn gọi là tập láng giềng (mở) của một đỉnh v, ký hiệu NG(v), bao gồm tất cả các đỉnh kề với v không kể v. Nếu kể cả v, tập này được gọi là tập láng giềng đóng, ký hiệu NG[v]. Nếu không nói rõ, một tập láng giềng được coi là mở. Chỉ số dưới G thường được bỏ qua nếu không gây nhầm lẫn. Trong đồ thị ví dụ, đỉnh 1 có hai hàng xóm: các đỉnh 2 và 5. Đối với đồ thị đơn, số láng giềng của một đỉnh trùng với bậc của đỉnh đó.

*Tập thống trị (dominating set) :Một tập thống trị của một đồ thị là một tập con của tập đỉnh, trong đó hợp của các tập láng giềng đóng của các đỉnh trong tập con đó bao gồm tất cả các đỉnh của đồ thị.

*Tập ổn định :Xem Độc lập.

*Tập ổn định trong* cùng nghĩa với tập độc lập. Tập ổn định ngoài** cùng nghĩa với tập thống trị. *Thành phần liên thông :Quan hệ liên thông trong đồ thị vô hướng là quan hệ tương đương, quan hệ này chia tập các đỉnh của đồ thị thành các lớp tương đương, mỗi lớp được gọi là một thành phần liên thông của một đồ thị.

*Thành phần liên thông mạnh :Thành phần liên thông mạnh của một đồ thị có hướng là một đồ thị con, trong đó từ mỗi đỉnh của nó đều có đường đi đến mọi đỉnh khác.

*Thống trị :Đỉnh v thống trị đỉnh u nếu có một cạnh từ v tới u. Một tập đỉnh V thống trị một tập đỉnh U khác nếu mọi đỉnh trong U đều thuộc V hoặc kề với một đỉnh nào đó trong V. Kích thước của tập thống trị nhỏ nhất được gọi là chỉ số thống trị γ(G). :Tập đỉnh S được gọi là thống trị ngoài (out-dominating) nếu mọi đỉnh ngoài S đều bị thống trị bởi một đỉnh nào đó thuộc S; gọi là thống trị trong (in-dominating) nếu mọi đỉnh thuộc S đều bị thống trị bởi một đỉnh nào đó không thuộc S.

*Trọng số :là các giá trị thường được gán cho các cạnh của đồ thị. Trọng số thường là các số thực. Chúng có thể bị giới hạn trong phạm vi số hữu tỷ hoặc số nguyên. Một số thuật toán có thể đòi hỏi các giới hạn khác đối với trọng số. Chẳng hạn, thuật toán Dijkstra chỉ dùng được cho các trọng số dương. Trọng số của đường đi hoặc trọng số của cây trong một đồ thị có trọng số là tổng trọng số của các cạnh được chọn. Đôi khi một cạnh không tồn tại được gán một trọng số đặc biệt để biểu diễn giá trị vô cùng. Từ chi phí đôi khi được dùng để chỉ trọng số.

👁️ 2 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
:_Bài này chỉ viết về các định nghĩa cơ bản. Để hiểu rộng hơn, xin xem lý thuyết đồ thị. Về ý nghĩa biểu diễn hàm số trên hệ tọa độ, xem đồ thị hàm
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
phải|khung|Một cây có dán nhãn với 6 đỉnh và 5 cạnh **Cây** là khái niệm quan trọng trong lý thuyết đồ thị, cấu trúc dữ liệu và giải thuật. Cây là một đồ thị mà
Trong lý thuyết đồ thị, tồn tại một **phép đồng phôi** (tiếng Anh: _homeomorphism_, còn gọi là **phép biến đổi tôpô**) giữa hai đồ thị _G_ và _G_′nếu tồn tại một đồ thị _H_ sao
:_Bài này viết về thuật ngữ "bậc" dùng trong lý thuyết đồ thị. Mời xem các bài bậc (toán học) hoặc bậc để đọc về các nghĩa khác._ Trong Lý thuyết đồ thị, **bậc** của
nhỏ | _[[Trẻ em mắt đen_, một trong những truyền thuyết thành thị nổi tiếng nhất trên thế giới.]] **Truyền thuyết đô thị** (còn gọi là **truyền thuyết thành thị**, **truyền thuyết thời hiện đại**;
phải|Một đồ thị đầy đủ K5 (5 đỉnh). Nếu đây là một đồ thị con thì tập đỉnh của nó sẽ tạo nên một clique kích thước 5. thumb|Đồ thị _G_ có: 23 clique 1
**Lý thuyết độ phức tạp tính toán** (tiếng Anh: _computational complexity theory_) là một nhánh của lý thuyết tính toán trong lý thuyết khoa học máy tính và toán học tập trung vào phân loại
**Truyền thuyết đô thị Nhật Bản** là những câu chuyện được lưu truyền trong dân gian Nhật Bản và được cho là có thật, dù chưa có bằng chứng xác thực. Những truyền thuyết đô
Cuốn sách Lý thuyết đồ thị và ứng dụng cài đặt bởi ngôn ngữ mạnh PYTHON gồm nội dung như sau Chương 1 Các định nghĩa, phân loại và một số khái niệm cơ bản
nhỏ|[[Trường Trung học phổ thông Nguyễn Thị Minh Khai, một địa điểm gắn liền với truyền thuyết đô thị Việt Nam về hồn ma áo tím.]] **Truyền thuyết đô thị Việt Nam** là những câu
thumb|Một đồ thị có hướng đơn giản Trong toán học, và cụ thể hơn trong lý thuyết đồ thị, **đồ thị có hướng** (tiếng Anh: **directed graph** hay **digraph**) là một đồ thị được tạo
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
nhỏ|[[Đồ thị Cayley của nhóm tự do có hai phần tử sinh. Đây là nhóm hyperbol có biên Gromov là tập Cantor. Tương tự với đồ thị Cayley, nhóm hyperbol và biên của nó là
Trong toán học, **đồ thị đối ngẫu** của một đồ thị mặt phẳng G là một đồ thị G' trong đó có một đỉnh tương ứng cho mỗi miền mặt phẳng của đồ thị G,
vừa|phải|Với _n_ bằng 5 Một đồ thị có e đỉnh, và có thể gán nhãn cho mỗi đỉnh với một số tự nhiên bất kỳ nằm giữa 0 và e sao cho: * mỗi đỉnh
Trong hình học đại số và vật lý lý thuyết, **đối xứng gương** là mối quan hệ giữa các vật thể hình học được gọi là những đa tạp Calabi-Yau. Các đa tạp này có
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
**Lí thuyết** là một loại chiêm nghiệm và hợp lí của cái gì đó trừu tượng hoặc khái quát hóa của suy nghĩ về một hiện tượng, hoặc kết quả của suy nghĩ như vậy.
nhỏ|Hình minh họa lý thuyết Móng ngựa. Những người ủng hộ _Thuyết móng ngựa_ cho rằng [[Chính trị cực tả|cực tả (left, trái) và cực hữu (right) thực sự gần nhau hơn là các đại
[[Hình:Hypergraph-wikipedia.svg|right|frame| Một ví dụ về siêu đồ thị, với X = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}E = \{e_1,e_2,e_3,e_4\} = \{\{v_1, v_2, v_3\}, \{v_2,v_3\}, \{v_3,v_5,v_6\}, \{v_4\}\}. ]] Trong toán học,một **siêu
**Lý thuyết về ràng buộc** (TOC) là một mô hình quản lý mà quan sát bất kỳ hệ thống quản lý nào bị giới hạn trong việc đạt được nhiều mục tiêu hơn bởi một
**Lý thuyết thông tin** là một nhánh của toán học ứng dụng và kĩ thuật điện nghiên cứu về đo đạc lượng thông tin. Lý thuyết thông tin được xây dựng bởi Claude E. Shannon
thumb|Thuật toán Euclid để tìm ước chung lớn nhất (ƯCLN) của hai đoạn thẳng BA và DC, độ dài của cả hai đều là bội của một "đơn vị" độ dài chung. Vì độ dài
nhỏ| Để tìm kiếm một mục đã cho trong một danh sách theo thứ tự nhất định, có thể sử dụng cả thuật toán [[Tìm kiếm tuần tự|tìm kiếm nhị phân và tuyến tính (bỏ
Trong lý thuyết tập hợp và các ứng dụng của nó quanh toán học, **lớp** là họ của các tập (và đôi khi trên cả các đối tượng toán học khác) và được định nghĩa
**Lý thuyết trò chơi**, hoặc gọi **đối sách luận**, **lí luận ván cờ**, là một phân nhánh mới của toán học hiện đại, cũng là một môn học trọng yếu của vận trù học, tác
Khái niệm của vòng phản hồi dùng để điều khiển hành vi động lực của hệ thống: đây là phản hồi âm, vì giá trị cảm biến (sensor) bị trừ đi từ giá trị mong
**Lý thuyết thông tin thuật toán** là một lĩnh vực của lý thuyết thông tin và khoa học máy tính liên quan đến mối quan hệ giữa tính toán và thông tin. Theo Gregory Chaitin,
**Lý thuyết xã hội** là các khung phân tích, hay các mô hình, được sử dụng để nghiên cứu và giải thích các hiện tượng xã hội. Vốn là một công cụ được sử dụng
**Lý thuyết mã hóa** là nghiên cứu về các đặc tính của mã và khả năng thích ứng với các ứng dụng cụ thể của chúng. Mã được sử dụng cho nén dữ liệu, mật
**Các lý thuyết về nguyên nhân của sự nghèo đói** là nền tảng cho các chiến lược xóa đói giảm nghèo. Trong khi ở các quốc gia phát triển, sự nghèo đói thường bị coi
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
**Lý thuyết chiếc thìa và tầng lớp** () là một khái niệm xã hội cho rằng mỗi cá nhân trong xã hội có thể được phân loại thành các tầng lớp kinh tế–xã hội khác
nhỏ|Đứa con tý hon bên trong một tinh trùng (hình vẽ của Nicolaas Hartsoeker, năm 1695) Trong sinh học, **lý thuyết tiền tạo thành** là một lý thuyết nay đã lỗi thời, nhưng rất phổ
thumb|Lý thuyết về dự định hành vi **Lý thuyết hành vi có kế hoạch hay lý thuyết hành vi hoạch định** (Tiếng Anh: **The Theory of Planning Behaviour**) là một lý thuyết thể hiện mối
**Pál Turán** (; 18 tháng 8 năm 1910 – 26 tháng 9 năm 1976) còn được biết là Paul Turán, là một nhà toán học Hungary làm việc với lý thuyết số. Ông từng cộng
phải|nhỏ| Tinh thể [[thủy ngân (II) sulfide và một số hợp chất thủy ngân khác có màu đỏ đậm, nhưng không được sử dụng công khai trong vũ khí hạt nhân. ]] **Thủy ngân đỏ**
**Lý thuyết số siêu việt** là một nhánh của lý thuyết số nghiên cứu các số siêu việt (các số không phải là nghiệm của bất kỳ phương trình đa thức nào với các hệ
Trong lý thuyết nhóm, thuật ngữ **cấp** (tiếng Anh: _order_) có hai ý nghĩa, cả hai ý nghĩa này đều liên hệ mật thiết với nhau: * cấp của một nhóm _G_ chính là số
khung|phải|Bản đồ Königsberg thời Euler, mô tả vị trí thực của bay cây cầu và sông Pregel. **Bài toán bảy cây cầu Euler**, còn gọi là **Bảy cầu ở Königsberg** là bài toán nảy sinh
thế=Sơ đồ luồng dữ liệu bao gồm lưu trữ dữ liệu, luồng dữ liệu, chức năng và giao diện.|nhỏ|387x387px|Sơ đồ luồng dữ liệu bao gồm lưu trữ dữ liệu, luồng dữ liệu, chức năng và
Bài này chứa các thuật ngữ được sử dụng trong tiếp thị. ## Tiếp thị truyền thống * Media Richness Theory * Lý thuyết quyền biến * Trải nghiệm khách hàng *Nhà tiếp thị ##
nhỏ|350x350px| Một trang trại đô thị ở [[Chicago ]] **Nông nghiệp** **đô thị** **, trồng trọt** **đô thị**, hoặc **làm vườn đô thị** là hoạt động trồng trọt, chế biến và phân phối thực phẩm
Trong lý thuyết đồ thị, **ma trận bậc** (tiếng Anh: **degree matrix**) là một ma trận đường chéo (_diagonal matrix_) chứa thông tin về bậc của mỗi đỉnh. ## Định nghĩa Cho một đồ thị
nhỏ|230x230px|Quang cảnh một góc khu đô thị Phú Mỹ Hưng tại Nam Sài Gòn nhỏ|230x230px|Khu đô thị Phú Mỹ Hưng - Đại lộ Nguyễn Văn Linh **Khu đô thị Phú Mỹ Hưng** là một khu
**Lịch sử của thuyết tương đối hẹp** bao gồm rất nhiều kết quả lý thuyết và thực nghiệm do nhiều nhà bác học khám phá như Albert Abraham Michelson, Hendrik Lorentz, Henri Poincaré và nhiều