Trong lý thuyết nhóm, thuật ngữ cấp (tiếng Anh: order) có hai ý nghĩa, cả hai ý nghĩa này đều liên hệ mật thiết với nhau:
- cấp của một nhóm G chính là số phần tử của G;
- cấp của phần tử a trong nhóm G là số nguyên dương m nhỏ nhất thỏa mãn , trong đó e là phần tử đơn vị của nhóm G, là tích (với phép toán trang bị cho nhóm G) của m phần tử a.
Ký hiệu cấp của nhóm G là ord(G) hoặc |G|; cấp của phần tử a được ký hiệu là ord(a) hoặc |a|.
Cấp của nhóm và của phần tử có thể hữu hạn hoặc vô hạn ∞. Ví dụ tập hợp các số nguyên Z cùng với phép toán cộng + lập thành một nhóm có cấp bằng ∞ (vì Z có vô số phần tử).
Ví dụ
Bảng sau là bảng nhân cho các phần tử của nhóm đối xứng : |
Nhóm có 6 phần tử, nên cấp của nó bằng 6:
:;
Cấp của các phần tử trong nhóm :
- phần tử đơn vị e có cấp bằng 1;
- các phần tử s, t, w bình phương lên bằng e: , nên chúng có cấp bằng 2;
- các phần tử u và v có cấp bằng 3; điều này có thể giải thích như sau: nên , tương tự cho v..
Cấp và cấu trúc của nhóm
Cấp của nhóm và cấp của phần tử trong nhóm nói lên rất nhiều điều về cấu trúc của chính nhóm đó.
Nếu cấp của nhóm G bằng 1 thì nó là nhóm tầm thường.
Nếu cấp của phần tử a bằng 1: thì a chính là phần tử đơn vị của nhóm.
Nếu mọi phần tử a (khác phần tử đơn vị) của nhóm G đều bằng nghịch đảo của chính các phần tử đó () thì chúng đều có cấp bằng 2: và nhóm G là nhóm Abel, vì:
:.
Điều ngược lại chưa chắc đúng. Ví dụ nhóm cộng các số nguyên modulo là nhóm Abel, nhưng không phải mọi phần tử của nó đều có cấp bằng 2, ví dụ phần tử 2 có cấp bằng 3: .
Một phần tử có cấp bằng cũng được gọi là một phần tử lũy đẳng.
Mối liên hệ giữa hai khái niệm của cấp
Mối liên hệ giữa hai khái niệm của cấp được giải thích như sau:
:nếu ta lấy nhóm xyclic sinh bởi phần tử g, ký hiệu là :
::,
:thì cấp của nhóm chính bằng cấp của phần tử g:
::.
Định lý Lagrange
Định lý Lagrange: Nếu H là nhóm con của G, và G có hữu hạn phần tử, thì H cũng hữu hạn và có cấp là ước số của cấp của G:
:: là số tự nhiên và bằng bản số của nhóm thương (G:H).
Từ định lý trên có thể suy ra, cấp của G chia hết cho cấp của mọi phần từ a thuộc G. Như đã xét trong ví dụ về nhóm , ord()=6 chia hết cho 2 là cấp của s,t,w và 3 là cấp của u,v.
Các tính chất của cấp của phần tử
Phần tử a và nghịch đảo của nó có cùng cấp:
::.
Nếu số nguyên k thỏa mãn: thì cấp của a là ước của k. Nhận xét này được áp dụng rất nhiều trong số học sơ cấp.
Nếu a có cấp hữu hạn thì mọi lũy thừa nguyên của a cũng có cấp hữu hạn. Cấp của phần tử được tính như sau:
: (ký hiệu UCLN(a,b) là ước số chung lớn nhất của a và b).
Ví dụ:
*Trong nhóm cộng các số nguyên modulo 5 , a=2 có cấp bằng 5 (vì ), nếu lấy k=2 thì sẽ có cấp bằng 2:
::.
Định lý Cauchy (định lý Côsi)
Định lý Cauchy: phát biểu rằng:
:Cho nhóm G hữu hạn. Nếu cấp của G chia hết cho p, và p là số nguyên tố, thì tồn tại ít nhất một phần tử a thuộc G có cấp bằng p.
Đồng cấu nhóm và cấp
Cho 2 nhóm G và H, nếu f: G → H là một đồng cấu, a là một phần tử thuộc G, cấp của a là hữu hạn. Khi đó là ước của .
Ví dụ:
- Từ nhận xét trên, ta suy ra không tồn tại đồng cấu nhóm h: S3 → Z5, vì mọi phần tử khác 0 trong nhóm Z5 đều có cấp bằng 5 và 5 không phải là ước của 1,2,3 là cấp của các phần tử trong S3.
Bản số của nhóm con chuẩn tắc
👁️
0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong lý thuyết nhóm, thuật ngữ **cấp** (tiếng Anh: _order_) có hai ý nghĩa, cả hai ý nghĩa này đều liên hệ mật thiết với nhau: * cấp của một nhóm _G_ chính là số
nhỏ|[[Đồ thị Cayley của nhóm tự do có hai phần tử sinh. Đây là nhóm hyperbol có biên Gromov là tập Cantor. Tương tự với đồ thị Cayley, nhóm hyperbol và biên của nó là
Trong lý thuyết nhóm, **định lý Lagrange** phát biểu rằng: nếu _H_ là nhóm con của nhóm hữu hạn _G_, thì cấp (số phần tử) của _G_ chia hết cho cấp của _H_. Định lý
**Định lý Cauchy** là một định lý trong lý thuyết nhóm được đặt tên theo tên của nhà toán học người Pháp Augustin Louis Cauchy. Định lý này phát biểu rằng nếu là một
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
Trong hình học đại số và vật lý lý thuyết, **đối xứng gương** là mối quan hệ giữa các vật thể hình học được gọi là những đa tạp Calabi-Yau. Các đa tạp này có
Trong vật lý lý thuyết, **Lý thuyết trường lượng tử** (tiếng Anh: **quantum field theory**, thường viết tắt QFT) là một khuôn khổ lý thuyết để xây dựng các mô hình cơ học lượng tử
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
**Lý thuyết dòng chảy hai bước trong truyền thông** chỉ ra rằng hầu hết mọi người hình thành quan điểm của họ dưới sự ảnh hưởng của những người dẫn dắt ý kiến (opinion leaders).
Trong toán học, đặc biệt là trong lĩnh vực lý thuyết nhóm hữu hạn, **định lý Sylow** là một nhóm các định lý được đặt tên theo nhà toán học Na Uy Ludwig Sylow vào
**Nhóm thương** hay **nhóm nhân tử** là nhóm thu được bằng cách gộp các phần tử tương tự với nhau của nhóm lớn hơn, dùng quan hệ tương đương để bảo toàn một số cấu
**Lý thuyết trò chơi**, hoặc gọi **đối sách luận**, **lí luận ván cờ**, là một phân nhánh mới của toán học hiện đại, cũng là một môn học trọng yếu của vận trù học, tác
Trong lý thuyết nhóm, một **nhóm cyclic** (hay **nhóm xyclic**, hay **nhóm monogenous**) là một nhóm có thể được sinh ra từ một tập hợp sinh chỉ gồm một phần tử _g_, phần tử này
**Lý thuyết về ràng buộc** (TOC) là một mô hình quản lý mà quan sát bất kỳ hệ thống quản lý nào bị giới hạn trong việc đạt được nhiều mục tiêu hơn bởi một
**Lý thuyết quyền biến** (tiếng Anh: _Contingency theory_) là một lý thuyết về tổ chức tuyên bố rằng không có cách tốt nhất để tổ chức, lãnh đạo một công ty hoặc đưa ra quyết
thumb|**[[Phép tính lambda** là một hệ thống hình thức để định nghĩa hàm, ứng dụng hàm và đệ quy được Alonzo Church đề xuất vào những năm 193x.]] **Lý thuyết ngôn ngữ lập trình** (thường
Trong Mác-xít, **lý thuyết giai cấp của Marx** khẳng định rằng vị trí của một cá nhân trong một hệ thống phân chia giai cấp được xác định bởi vai trò của cá nhân đó
Trong toán học, **định lý Golod–Shafarevich** được chứng minh trong 1964 bởi Evgeny Golod và Igor Shafarevich. Định lý này là kết quả trong đại số đồng điều không giao hoán giải **bài toán tháp
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
Trong đại số trừu tượng, **đẳng cấu nhóm** là hàm thiết lập quan hệ tương ứng một-một giữa hai nhóm trong đó vẫn bảo toàn được phép toán nhóm. Nếu tồn tại đẳng cấu giữa
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
Trong toán học, đặc biệt là trong lý thuyết nhóm, **chỉ số** của nhóm con _H_ trong _G_ là số lớp kề trái của _H_ trong _G_, hoặc tương đương là số lớp kề phải
thumb|[[Biểu đồ Hasse cho mạng các nhóm con của nhóm nhị diện Dih4. Hàng thứ hai là các nhóm tối đại; giao của các nhóm đó (**Nhóm con Frattini**) là phần tử tâm tại hàng
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
thumb|Lý thuyết về dự định hành vi **Lý thuyết hành vi có kế hoạch hay lý thuyết hành vi hoạch định** (Tiếng Anh: **The Theory of Planning Behaviour**) là một lý thuyết thể hiện mối
thumb|[[Nhóm nhị diện cấp 8 yêu cầu hai phần tử sinh, được minh họa trong biểu đồ trên]] Trong đại số, các **nhóm hữu hạn sinh** là các nhóm _G_ có tập sinh hữu hạn
**Lý thuyết dòng chảy đa bước trong truyền thông** chỉ ra rằng thông tin từ phương tiện truyền thông đại chúng đến những người dẫn dắt ý kiến trước đến cộng đồng và dòng chảy
**Cú hích** là một khái niệm trong khoa học hành vi, lý thuyết chính trị và kinh tế học hành vi, lý thuyết này chỉ ra rằng hoạt động củng cố tích cực và đề
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
phải|nhỏ| Cho một [[tam giác đều , phép quay ngược chiều kim đồng hồ một góc 120° quanh tâm của tam giác sẽ ánh xạ mọi đỉnh của tam giác với một đỉnh khác. Nhóm
Trong lý thuyết tập hợp và các ứng dụng của nó quanh toán học, **lớp** là họ của các tập (và đôi khi trên cả các đối tượng toán học khác) và được định nghĩa
nhỏ|Các vectơ mật độ dòng điện xác suất cảm ứng từ tính được tính toán bằng phương pháp lượng tử trong benzen. **Hóa học lý thuyết** là một nhánh của hóa học trong đó phát
Trong lý thuyết nhóm thuộc đại số trừu tượng, **nhóm Quỷ** M (còn gọi là **quỷ Fischer–Griess** hay **người khổng lồ dễ gần**) là nhóm sporadic đơn giản lớn nhất, với cấp: 2463205976112133171923293141475971 = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ≈
nhỏ|Bìa cuốn sách _Homotopy Type Theory: nền tảng thống nhất của toán học_. Trong logic toán và khoa học máy tính, **lý thuyết hình thái đồng luân** (tiếng Anh: **homotopy type theory**, **HoTT** ) đề
Trong đại số, **lý thuyết vành** là các nghiên cứu về vành—các cấu trúc đại số trong đó phép cộng và phép nhân được định nghĩa và có các thuộc tính tương tự như các
Trong toán học, và cụ thể là trong lý thuyết nhóm, một **p-nhóm Prüfer** là bất kỳ nhóm nào đẳng cấu với nhóm nhân :
Trong lý thuyết trò chơi, **cách giải** được định nghĩa là một nguyên tắc chính thống, dùng để dự đoán trò chơi sẽ diễn ra như thế nào. Những dự đoán này được gọi là
Trong toán học, đặc biệt là lý thuyết nhóm, **tích trực tiếp** là một nhóm mới được xây dựng từ hai nhóm và cho trước. Nếu các nhóm và là các
**Lý thuyết văn hóa đa chiều của Hofstede**, đề ra bởi nhà nhân chủng học người Hà Lan- Geert Hofstede, được coi là khuôn khổ cho sự giao tiếp đa quốc gia. Bằng việc phân
phải|nhỏ|429x429px| [[Hendrik Lorentz|Hendrik Antoon Lorentz (1853 bóng1928), sau đó nhóm Lorentz được đặt tên. ]] Trong vật lý và toán học, **nhóm Lorentz** là nhóm của tất cả các phép biến đổi Lorentz của không
Trong toán học, **nhóm Heisenberg** , được đặt tên theo nhà toán học Werner Heisenberg, là nhóm các ma trận tam giác trên 3 × 3 dưới dạng ::
thumb|Các cấu trúc đại số nằm giữa [[Magma (đại số)|magma và nhóm: _nửa nhóm_ là magma đi kèm theo tính kết hợp. monoid là _nửa nhóm_ kèm thêm phần tử đơn vị.]] Trong toán học,
Trong cơ học lượng tử, **lý thuyết nhiễu loạn** là một tập hợp các sơ đồ gần đúng liên quan trực tiếp đến nhiễu loạn toán học để mô tả một hệ lượng tử phức
Trong toán học, **nhóm nhân các số nguyên modulo _n**_ là một nhóm với phép nhân là phép toán nhóm và các phần tử là các đơn vị đơn vị trong một vành : với
Trong đại số trừu tượng, **định lý cơ bản về nhóm cyclic** khẳng định rằng nếu _G_ là một nhóm cyclic cấp _n_ thì mọi nhóm con của _G_ cũng là cyclic. Hơn nữa, cấp
**Lý thuyết về vòng đời sản phẩm** là một lý thuyết kinh tế được phát triển bởi Raymond Vernon nhằm đáp lại sự thất bại của mô hình Heckscher-Ohlin trong việc giải thích bản mẫu
Trong đại số, **nhóm con chuẩn tắc** (hay còn gọi là **nhóm con bất biến** hoặc **nhóm con tự liên hợp**) là nhóm con bất biến dưới mọi tác động liên hợp. Nói cách khác,
**Thuyết sử dụng và hài lòng** (TSDVHL) là lý thuyết giả định rằng con người chủ động tiếp cận phương tiện truyền thông để thỏa mãn những nhu cầu cụ thể của họ. Thuyết sử
Trong đại số trừu tượng, **nhóm hữu hạn** là nhóm có tập của nó có hữu hạn số phần tử. Nhóm hữu hạn thường xuất hiện khi xét đối xứng của các đối tượng toán
**Lịch sử của thuyết tương đối hẹp** bao gồm rất nhiều kết quả lý thuyết và thực nghiệm do nhiều nhà bác học khám phá như Albert Abraham Michelson, Hendrik Lorentz, Henri Poincaré và nhiều