✨Bảng thừa số nguyên tố
Bảng này cho dạng phân tích tiêu chuấn (xem định lý cơ bản của số học) của các số tự nhiên từ 1 đến 1000. Khi n là một số nguyên tố, phân tích tiêu chuẩn của n là chính nó và trong bảng này n được in đậm.
1 là một số đặc biệt, nó không phải là số nguyên tố và cũng không phải là hợp số, vì nó chỉ có 1 ước số là chính nó.
Từ 1 đến 100
|
|
|
|
|}
Từ 101 đến 200
|
|
|
|
|}
Từ 201 đến 300
|
|
|
|
|}
Từ 301 đến 400
|
|
|
|
|}
Từ 401 đến 500
|
|
|
|
|}
Từ 501 đến 600
|
|
|
|
|}
Từ 601 đến 700
|
|
|
|
|}
Từ 701 đến 800
|
|
|
|
|}
Từ 801 đến 900
|
|
|
|
|}
Từ 901 đến 1000
|
|
|
|
|}
👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Bảng này cho **dạng phân tích tiêu chuấn** (xem định lý cơ bản của số học) của các số tự nhiên từ 1 đến 1000. Khi _n_ là một số nguyên tố, phân tích tiêu
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
**Số nguyên tố an toàn** là một số nguyên tố có dạng với _p_ cũng là số nguyên tố. (Theo quy ước, số nguyên tố _p_ được gọi là số nguyên
Trong lý thuyết số, số nguyên tố được gọi là **số nguyên tố Sophie Germain** nếu cũng là số nguyên tố. Số của số nguyên tố
Trong lý thuyết số, **số nguyên tố chính quy** là một loại đặc biệt của số nguyên tố, được định nghĩa bởi Ernst Kummer trong 1850 để chứng minh một số trường hợp của định
**Số nguyên tố Mersenne** là một số nguyên tố có giá trị bằng 2n − 1. Ví dụ 31 là số nguyên tố Mersenne vì 31 = 25 − 1 (31 và 5 đều là
thumb| [[Phân phối tần suất khoảng cách số nguyên tố cho các số nguyên tố lên tới 1.6 tỷ. Các cực đại đều là bội của 6.]] **Khoảng cách số nguyên tố** là khoảng cách
Trong toán học, một **cặp số nguyên tố sexy** là một cặp hai số nguyên tố có hiệu bằng sáu; so với các cặp số nguyên tố sinh đôi, là các cặp số nguyên tố
Bảng này gồm danh sách 1000 số nguyên tố đầu tiên và một số danh sách các số nguyên tố đặc biệt. 1 ## Một nghìn số nguyên tố đầu tiên Đây là danh sách
nhỏ|Mô phỏng bằng với các que Cuisenaire, các tính chất của các số gần như nguyên tố bậc 2 của số 6 Trong lý thuyết số, một số tự nhiên được gọi là **số gần
Với _n_ ≥ 2, **giai thừa nguyên tố** (tiếng Anh: _primorial_) (ký hiệu _n_#) là tích của tất cả các số nguyên tố nhỏ hơn hoặc bằng _n_. Chẳng hạn, 7# = 210 là tích
Trong toán học, **định lý cơ bản của số học** (tiếng Anh: Fundamental theorem of arithmetic) hay **định lý phân tích thừa số nguyên tố** (tiếng Anh: Prime factorization theorem) phát biểu rằng mọi số
**Số Fermat** là một khái niệm trong toán học, mang tên nhà toán học Pháp Pierre de Fermat, người đầu tiên đưa ra khái niệm này. Nó là một số nguyên dương có dạng :
thumb|[[Bảng tuần hoàn]] **Nguyên tố hóa học**, thường được gọi đơn giản là **nguyên tố**, là một chất hóa học tinh khiết, bao gồm một kiểu nguyên tử, được phân biệt bởi số hiệu nguyên
phải|nhỏ|300x300px| Một lời giải thích về các số viết ở trên và ở dưới được thấy trong ký hiệu số nguyên tử. Số nguyên tử là số proton, và do đó cũng là tổng điện
nhỏ| Đến năm 1772, [[Leonhard Euler đã chứng minh rằng 2 147 483 647 là một số nguyên tố. ]] **2.147.483.647** là số nguyên tố Mersenne thứ tám, có giá trị bằng 2 31- 1.
**69** (**sáu mươi chín**; ****) là số tự nhiên liền sau số 68 và liền trước số 70. Đây là số lẻ, là hợp số chia hết cho 1, 3, 23 và 69. Ngoài ra,
Trong toán học, **nhóm nhân các số nguyên modulo _n**_ là một nhóm với phép nhân là phép toán nhóm và các phần tử là các đơn vị đơn vị trong một vành : với
**Số chính phương** là số tự nhiên có căn bậc hai là một số tự nhiên, hay nói cách khác, số chính phương bằng bình phương (lũy thừa bậc 2) của một số nguyên. Số
Trong toán học, **số nguyên** được định nghĩa một cách thông dụng là một số có thể được viết mà không có thành phần phân số. Ví dụ: 21, 4, 0 và −2048 là các
**7** (**bảy** hay **bẩy**) là một số tự nhiên ngay sau 6 và ngay trước 8. ** Số bảy là số nguyên tố. ** Số bảy là số may mắn của người Nhật Bản. **
Trong toán học, **số Cullen** là số nằm trong dãy số (trong đó là số tự nhiên). Các số Cullen được lần đầu nghiên cứu bởi nhà
Trong lý thuyết số, một **số nguyên Woodall** (Wn) là bất kỳ số tự nhiên nào có dạng : với n là số tự nhiên bất kỳ. Các
**23** (**hai mươi ba**) là một số tự nhiên ngay sau 22 và ngay trước 24. ## Trong toán học * Số 23 là số nguyên tố thứ 9, và là số nguyên tố lẻ
**2** (**hai**) là một số, số từ và chữ số. Đó là số tự nhiên đứng sau số 1 và trước số 3. Số 2 còn là số nguyên tố chẵn duy nhất. Bởi vì
**Số Zoussel** là một loại số không có thừa số vuông và có ít nhất ba thừa số nguyên tố. :105, 1419, 1729, 1885, 4505, 5719, 15387, 24211, 25085, 27559, 31929, 54205, 59081, 114985, 207177,
Trong toán học tiêu khiển, **Số repunit** (hoặc gọi tắt đi là **repunit**) là các số tương tự như 11, 111, hoặc 1111, tức là các số chỉ bao gồm chữ số 1 — dạng
**Lũy thừa** (từ Hán-Việt: nghĩa là "_nhân chồng chất lên_") là một phép toán toán học, được viết dưới dạng , bao gồm hai số, cơ số và _số mũ_ hoặc _lũy thừa_ , và
Bảng tuần hoàn tiêu chuẩn 18 cột. Màu sắc thể hiện các nhóm [[nguyên tố hoá học của nguyên tử khác nhau và tính chất hóa học trong từng nhóm (cột)]] **Bảng tuần hoàn** (tên
thumb|Mô phỏng bằng các [[thanh Cuisenaire về bản chất lũy thừa hoàn hảo của 4, 8, và 9]] Trong toán học, **lũy thừa hoàn hảo** là số tự nhiên bằng tích của các phần tử
Trong toán học, **ước số chung lớn nhất** (**ƯCLN**) hay **ước chung lớn nhất** (**ƯCLN**) của hai hay nhiều số nguyên là số nguyên dương lớn nhất là ước số chung của các số đó.
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
nhỏ|[[Biểu đồ Venn cho thấy hợp của _A_ và _B_]] Trong tổ hợp, một nhánh của toán học, **nguyên lý bao hàm-loại trừ** (hay **nguyên lý bao hàm và loại trừ** hoặc **nguyên lý bù
Trong số học, **bội số chung nhỏ nhất** (hay còn gọi tắt là **bội chung nhỏ nhất**, được viết tắt là **BCNN**, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common
phải|nhỏ|Các số tự nhiên dùng để đếm (một quả táo, hai quả táo, ba quả táo....). Trong toán học, các **số tự nhiên** được sử dụng để đếm (như trong "có _sáu_ đồng xu trên
**Định lý Euclid** là một tuyên bố cơ bản trong lý thuyết số khẳng định rằng có vô số số nguyên tố. Nó đã được Euclid chứng minh đầu tiên trong tác phẩm _Cơ sở_
**Số Lucas** là một dãy số được đặt tên nhằm vinh danh nhà toán học François Édouard Anatole Lucas (1842–1891), người đã nghiên cứu dãy số Fibonacci, dãy số Lucas và các dãy tương tự.
Trong toán học, các **số idoneal** của Euler (cũng được gọi là **số tiện lợi**) là số nguyên dương _D_ sao bất cứ số nguyên nào có duy nhất một cách biểu diễn thành _x_2 ± _Dy_2
thumb|Mô tả bằng các [[thanh Cuisenaire về độ dư thừa của số 12]] Trong lý thuyết số, **Số phong phú** hay **số dư thừa** là số sao cho tổng các ước thực sự của số
thumb|Tập hợp các cách nối điểm không cắt nhau (trên) và cắt nhau (dưới - 10 cách) trong tổng cộng 52 cách. Trong toán tổ hợp, **số Catalan** là dãy các số tự nhiên xuất
**Phân số tối giản** là phân số mà có tử số và mẫu số không thể cùng chia hết cho số nào ngoại trừ số 1 (hoặc -1 nếu lấy các số âm). Nói cách
Trong toán học một **số gần hoàn thiện dư** _n_ là số mà tổng các ước số của nó bằng 2_n + 1_. Cho đến nay vẫn chưa có số gần hoàn thiện dư nào
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
nhỏ|240x240px| Hằng số toán học [[Pi| là một số vô tỉ được thể hiện nhiều trong văn hóa đại chúng. ]] phải|nhỏ|240x240px| Số [[Căn bậc hai của 2| là số vô tỉ ]] Trong toán
thumb|220x124px | right | Đồ thị hàm gamma và các cách diễn tả mở rộng khác của giai thừa Trong toán học, **giai thừa** là một toán tử một ngôi trên
thumb|alt=Cân thăng bằng trống|Hai đĩa cân thăng bằng này chứa không đồ vật, chia ra làm hai nhóm bằng nhau. Không là số chẵn. Nói theo cách khác, _tính chẵn lẻ_ của nó—đặc tính của
nhỏ|254x254px|Đồ thị của hàm số . là số duy nhất lớn hơn 1 sao cho diện tích phần được tô màu bằng 1. Số **** là một hằng số toán học có giá trị gần
Trong toán học, **dãy Lucas** và là các dãy số nguyên đệ quy không đổi thỏa mãn hệ thức truy hồi :
Trong toán học và khoa học máy tính, hàm **floor** (**phần nguyên nhỏ hơn**) và **ceiling** (**phần nguyên lớn hơn**) là các quy tắc cho tương ứng một số thực vào một số nguyên gần
**Căn nguyên thủy modulo _n**_ là một khái niệm trong số học modulo của lý thuyết số. ## Khái niệm Nếu _n_ ≥ 1 là một số nguyên thì các số nguyên nguyên tố cùng