Trừu tượng hóa trong toán học là quá trình rút ra bản chất cơ bản của một khái niệm toán học, loại bỏ bất kỳ sự phụ thuộc nào vào các đối tượng trong thế giới thực mà nó có thể được kết nối ban đầu và khái quát hóa nó để nó có các ứng dụng rộng hơn hoặc phù hợp với các mô tả trừu tượng khác về các hiện tượng tương đương. Hai trong số các lĩnh vực trừu tượng nhất của toán học hiện đại là lý thuyết phạm trù và lý thuyết mô hình.
Miêu tả
Nhiều lĩnh vực toán học bắt đầu với việc nghiên cứu các vấn đề trong thế giới thực, trước khi các quy tắc và khái niệm cơ bản được xác định và định nghĩa là các cấu trúc trừu tượng. Ví dụ, hình học có nguồn gốc từ việc tính toán khoảng cách và diện tích trong thế giới thực; đại số bắt đầu với các phương pháp giải các bài toán trong số học.
Trừu tượng là một quá trình liên tục trong toán học và sự phát triển lịch sử của nhiều chủ đề toán học thể hiện một sự tiến bộ từ cụ thể đến trừu tượng. Lấy sự phát triển lịch sử của hình học làm ví dụ; Những bước đầu tiên trong sự trừu tượng của hình học đã được người Hy Lạp cổ đại thực hiện, với tác phẩm Cơ sở của Euclid là tài liệu đầu tiên về các tiên đề của hình học phẳng - mặc dù Proclus đã kể về một tiên đề trước đó của Hippocrates thành Chios. Vào thế kỷ 17, Descartes đã giới thiệu tọa độ Descartes cho phép phát triển hình học giải tích. Các bước tiếp theo về sự trừu tượng hóa đã được thực hiện bởi lobachevsky, Bolyai, Riemann và Gauss, người đã khái quát các khái niệm về hình học để phát triển hình học phi Euclide. Sau này vào thế kỷ 19, các nhà toán học đã khái quát hóa hình học hơn nữa, phát triển các lĩnh vực như hình học theo n chiều, hình học xạ ảnh, hình học affine và hình học hữu hạn. Cuối cùng, "chương trình Erlangen" của Felix Klein đã xác định chủ đề cơ bản của tất cả các hình học này, xác định mỗi trong số chúng là nghiên cứu về các tính chất bất biến theo một nhóm đối xứng nhất định. Mức độ trừu tượng này cho thấy các kết nối giữa hình học và đại số trừu tượng.
**Trừu tượng hóa** trong toán học là quá trình rút ra bản chất cơ bản của một khái niệm toán học, loại bỏ bất kỳ sự phụ thuộc nào vào các đối tượng trong thế
Một **đối tượng toán học** là một đối tượng trừu tượng phát sinh trong toán học. Khái niệm này được nghiên cứu trong triết học toán học. Trong hoạt động toán học, một _đối tượng_
nhỏ|"Hình vuông đen", tranh của Kazimir Malevich, 1915 **Trừu tượng Hình học** là một hình thức nghệ thuật trừu tượng dựa trên việc sử dụng các dạng hình học và đôi khi, mặc dù không
Một tập hợp hình đa giác trong một [[biểu đồ Euler]] Tập hợp các số thực (R), bao gồm các số hữu tỷ (Q), các số nguyên (Z), các số tự nhiên (N). Các số
nhỏ|304x304px|Bức tranh trừu tượng màu nước đầu tiên của [[Wassily Kandinsky|Kandinsky, 1910 ]] **Nghệ thuật Trừu tượng** là trào lưu hội họa đầu thế kỷ 20, vào những năm 1910 đến 1914. Nghệ thuật trừu
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và
Trong công nghệ phần mềm và khoa học máy tính, **trừu tượng** (tiếng Anh: **abstraction**) là: * Quá trình loại bỏ hoặc khái quát các chi tiết vật lý, không gian hoặc thời gian hoặc
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Trong toán học, một **biểu thức** hay **biểu thức toán học** là một tổ hợp hữu hạn các ký hiệu được tạo thành sao cho đúng dạng theo các quy tắc phụ thuộc vào ngữ
Trong toán học, **một cấu trúc trên một tập hợp** (hoặc tổng quát hơn là trên một kiểu) là một hệ thống các đối tượng toán học được gắn kết với tập hợp đó theo
**Toán học thực nghiệm** là một cách tiếp cận toán học trong đó tính toán được sử dụng để điều tra các đối tượng toán học và xác định các thuộc tính và mẫu. Nó
**Nhà toán học** là người có tri thức rộng về toán học và sử dụng chúng trong công việc của mình, điển hình là giải quyết các vấn đề toán học. Đối tượng toán học
Nói chung, **toán học thuần túy** là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng. Đây là một loại hoạt động toán học có thể nhận biết được từ thế kỷ 19
**Đại số trừu tượng** là một ngành toán học liên quan đến việc nghiên cứu các cấu trúc đại số như nhóm, vành (toán học), trường, hay các cấu trúc tổng quát khác. Thuật ngữ
**Chủ nghĩa biểu hiện trừu tượng** là một phong trào nghệ thuật sau Thế chiến II trong hội họa Mỹ, được phát triển ở New York vào những năm 1940. Đó là phong trào đặc
**Toán học của thuyết tương đối rộng** là mô hình chứa đựng cấu trúc và kỹ thuật toán học được sử dụng để nghiên cứu và thiết lập lên thuyết tương đối rộng của Einstein.
Toán học không có định nghĩa được chấp nhận chung. Các trường phái tư tưởng khác nhau, đặc biệt là trong triết học, đã đưa ra các định nghĩa hoàn toàn khác nhau. Tất cả
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
Trong khoa học máy tính, **kiểu dữ liệu trừu tượng** (tiếng Anh: _abstract data type_, viết tắt: **ADT**) là một mô hình toán học cho kiểu dữ liệu mà ở đó dữ liệu được định
Một **mô hình toán học** là một mô hình trừu tượng sử dụng ngôn ngữ toán để mô tả về một hệ thống. Mô hình toán được sử dụng nhiều trong các ngành khoa học
Trong toán học, thuật ngữ **mầm** của một đối tượng trong/trên không gian tô pô là lớp tương đương của đối tượng đó và các đối tượng khác cùng loại và chúng đều có chung
Trong triết học toán học, **toán học kiến thiết** hay **chủ nghĩa kiến thiết** là tư tưởng cho rằng cần thiết phải _tìm ra_ (hoặc _xây dựng_) một vật thể toán học để khẳng định
Toán học Việt Nam có khởi nguồn chậm phát triển từ thời phong kiến vốn chỉ phục vụ các mục đích đo đạc tính toán và bắt đầu hình thành nền móng hiện đại do
Trong toán học, một **phép nhúng** khái quát hóa ý tưởng về việc đặt một vật thể vào trong một vật thể khác (một cách phù hợp). ## Tô pô và hình học ### Tô
thumb|Scalar là các [[số thực dùng trong đại số tuyến tính, đối ngược với vectơ (toán học và vật lý). Hình này thể hiện một vectơ. Tọa độ _x_ and _y_ là các scalar vì
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
Trong khoa học máy tính, một **máy trạng thái trừu tượng** (MTT) (hay trong tiếng Anh: Abstract State Machine - ASM) là một máy trạng thái trong đó, số lượng các trạng thái không nhất
**Lý thuyết độ phức tạp tính toán** (tiếng Anh: _computational complexity theory_) là một nhánh của lý thuyết tính toán trong lý thuyết khoa học máy tính và toán học tập trung vào phân loại
nhỏ| [[Tập hợp con (toán học)|Các tập con của số phức. ]] **Số** là một đối tượng toán học được sử dụng để đếm, đo lường và đặt danh nghĩa. Các ví dụ ban đầu
**Logic toán** là một ngành con của toán học có liên hệ gần gũi với cơ sở toán học, khoa học máy tính lý thuyết, logic triết học. Ngành này bao gồm hai phần: nghiên
Trong toán học, một **toán tử** (tiếng Anh _operator_, phân biệt với _operation_ - phép toán) là một hàm, thông thường có một vai trò quan trọng trong một lĩnh vực nào đấy. Chẳng hạn
**Học sâu** (tiếng Anh: **deep learning**, còn gọi là **học cấu trúc sâu**) là một phần trong một nhánh rộng hơn các phương pháp học máy dựa trên mạng thần kinh nhân tạo kết hợp
Trong giáo dục, **Tư duy tính toán** hay **Tư duy máy tính** (Computational Thinking - CT) là một tập hợp các phương pháp giải quyết vấn đề liên quan đến việc diễn đạt các vấn
Trong ngành khoa học máy tính, **cây cú pháp trừu tượng** (AST, abstract syntax tree) là một cây có giới hạn, có nhãn và có định hướng. Đây là cấu trúc cây mà các nút
Là một nhánh của toán học, đại số phát triển vào cuối thế kỷ 16 ở châu Âu với công trình của François Viète. Đại số được xem xét một cách đáng chú ý như
Trong toán học, **phép toán hai ngôi** hay **phép toán nhị nguyên** là một phép toán sử dụng hai biến đầu vào và cho ra một kết quả. Các biến và kết quả đều thuộc
**Thuyết tương đối ngôn ngữ** (), hay **giả thuyết Sapir-Whorf**, cho rằng cấu trúc ngôn ngữ ảnh hưởng đến tư duy và khả năng nhận biết thế giới xung quanh. Đó là, ngôn ngữ quyết
phải|nhỏ|[[Lưu đồ thuật toán (thuật toán Euclid) để tính ước số chung lớn nhất (ưcln) của hai số _a_ và _b_ ở các vị trí có tên A và B. Thuật toán tiến hành bằng
Bài viết này là **danh sách các thuật toán** cùng một mô tả ngắn cho mỗi thuật toán. ## Thuật toán tổ hợp ### Thuật toán tổ hợp tổng quát * Thuật toán Brent: tìm
Trong toán học, một **đối tượng tự do** là một khái niệm cơ bản của đại số trừu tượng. ## Định nghĩa Đặt (_C_,_F_) là một phạm trù cụ thể (nghĩa là là một hàm
**Bản đồ học** hay **Đồ bản học** là khoa học nghiên cứu và phản ánh sự phân bố không gian, sự phối hợp mối liên hệ giữa các đối tượng, hiện tượng tự nhiên và
**Toán tài chính** (tiếng Anh: _mathematical finance_) là một ngành toán học ứng dụng nghiên cứu thị trường tài chính. Nói chung, tài chính toán học sẽ thừa kế và mở rộng các mô hình
Trong toán học và lập trình máy tính, **thứ tự của toán tử** (_order of operations_) hay **độ ưu tiên của toán tử** (_operator precedence_) là một tập hợp các quy tắc phản ánh quy
Trong lý thuyết khả tính, **bài toán dừng** có thể diễn đạt như sau: cho trước một chương trình máy tính, quyết định xem chương trình đó có chạy mãi mãi hay không. Bài toán
Trong toán học, thuật ngữ " **phiếm hàm** " (danh từ, tiếng Anh là **functional**) có ít nhất 3 nghĩa sau : nhỏ|451x451px|Phiêm hàm [[Chiều dài cung - Arc length|chiều dài cung đi từ miền
Trong toán học, **nghịch đảo phép cộng** của một số là số mà khi cộng với cho kết quả 0. Số này cũng được gọi là **số đối**,** số đảo dấu**. Đối với số thực,