Trong toán học, một biểu thức hay biểu thức toán học là một tổ hợp hữu hạn các ký hiệu được tạo thành sao cho đúng dạng theo các quy tắc phụ thuộc vào ngữ cảnh. Ký hiệu toán học có thể là con số (hằng số), biến số, phép toán, hàm số, dấu ngoặc, dấu chấm, hoặc các dấu chỉ ra độ ưu tiên của phép toán cũng như các khía cạnh khác của cú pháp logic.
Nhiều tác giả phân biệt giữa biểu thức và công thức như sau: biểu thức là một đối tượng toán học, còn công thức dùng để chỉ một phát biểu về các đối tượng toán học. Ví dụ như và đều là các biểu thức, còn là một công thức. Tuy nhiên, trong toán học hiện đại, cụ thể là đại số máy tính, công thức được xem như biểu thức mà gieo giá trị đúng hoặc sai dựa theo giá trị của các biến trong biểu thức. Với là số thực, sẽ gieo giá trị sai khi bé hơn , và gieo giá trị đúng với các trường hợp còn lại.
Ví dụ
Việc sử dụng các biểu thức dao động từ đơn giản:
(đa thức tuyến tính)
(đa thức bậc hai)
(phân thức hữu tỷ)
cho đến phức tạp:
(chuỗi Ramanujan-Sato).
Cú pháp và ngữ nghĩa
Cú pháp
Một biểu thức được cấu tạo từ cú pháp. Do đó, nó phải đúng dạng: phép toán được phép có mặt trong biểu thức cần có lượng đúng số đầu vào, các ký tự cấu thành đều hợp lệ, thứ tự toán tử rõ ràng, vân vân. Tổ hợp ký hiệu nào không tuân theo cú pháp được xem là không đúng dạng và không được coi là một biểu thức toán học hợp lệ.
Lấy ví dụ, trong ký hiệu thông thường của số học, biểu thức đúng dạng, còn biểu thức thì không.
Ngữ nghĩa
Ngữ nghĩa học là môn nghiên cứu ý nghĩa của ngôn ngữ. Ngữ nghĩa học hình thức quân tâm đến ý nghĩa của mỗi biểu thức.
Trong đại số, biểu thức có thể dùng để chỉ một giá trị, mà bản thân nó phụ thuộc giá trị được gán cho các biến có trong biểu thức. Xác định giá trị giờ đây dựa vào ngữ nghĩa gắn liền với mỗi ký hiệu trong biểu thức. Lựa chọn ngữ nghĩa phải tùy vào ngữ cảnh của biểu thức. Cùng một biểu thức có thể có những giá trị khác nhau ( hoặc ) nếu thứ tự ưu tiên của phép toán trong ngữ cảnh được định nghĩa khác nhau.
Quy tắc ngữ nghĩa đôi khi cho phép một số biểu thức không cần chỉ bất kỳ giá trị nào (chẳng hạn như khi chia cho 0). Những biểu thức như thế được coi là có giá trị không xác định (không được định nghĩa), tuy nhiên, chúng vẫn đúng dạng theo cú pháp. Nhìn chung, ngữ nghĩa của biểu thức không chỉ giới hạn ở giá trị, mà đôi khi biểu thức có thể là một điều kiện logic, hoặc một phương trình sắp sửa được giải, hoặc bản thân nó cũng có thể được xem là một đối tượng toán học mà áp dụng được các biến đổi đại số theo các quy tắc nhất định. Một số biểu thức biểu thị giá trị và cùng lúc ràng buộc một điều kiện nào đó là đúng, chẳng hạn như biểu thức liên quan toán tử tổng trực tiếp trong đại số trừu tượng.
Ngôn ngữ hình thức và phép tính lambda
Ngôn ngữ hình thức đưa đến hình thức hóa khái niệm biểu thức đúng dạng.
Năm 1930, một loại biểu thức mới, mang tên biểu thức lambda, đã xuất hiện trong quá trình hai ông Alonzo Church và Stephen Kleene hình thức hóa hàm số. Và đây trở thành nền tảng cho phép tính lambda, một hệ thống hình thức dùng trong logic toán học và lý thuyết ngôn ngữ lập trình.
Liệu hai biểu thức lambda có tương đương nhau không là một bài toán bất khả định. Bất khả định xảy ra tương tự với biểu thức biểu thị số thực cấu tạo từ số nguyên thông qua toán tử số học, hàm logarit và hàm số mũ (định lý Richardson).
Biến số
Nhiều biểu thức toán học chứa biến số. Bất kỳ biến nào cũng rơi vào hai loại, hoặc là biến tự do hoặc là biến ràng buộc.
Với mỗi tổ hợp giá trị của biến tự do, một biểu thức có thể được tính giá trị, và trong một số tổ hợp giá trị của biến tự do, giá trị biểu thức đôi khi trở nên không xác định. Vì thế, một biểu thức đã biểu diễn một hàm số với đầu vào là các giá trị của biến tự do còn đầu ra là giá trị tương ứng của biểu thức.
Dễ thấy, biểu thức có thể được tính với , và gieo giá trị , nhưng không xác định khi .
Có thể thấy, việc tính giá trị biểu thức phụ thuộc định nghĩa của các toán tử toán học cũng như hệ thống giá trị đi kèm trong ngữ cảnh biểu thức hiện tại.
Hai biểu thức được nói là tương đương nhau khi với mỗi tổ hợp giá trị của biến tự do thì hai biểu thức luôn gieo cùng một giá trị, nghĩa là chúng biểu diễn cùng một hàm số. Ví dụ biểu thức:có một biến tự do , một biến ràng buộc , các hằng số , , cùng với phép nhân, phép lũy thừa, phép lấy tổng . Biểu thức này thật ra tương đương với một biểu thức dạng đóng được thể hiện bằng phương trình:
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong toán học, một **biểu thức** hay **biểu thức toán học** là một tổ hợp hữu hạn các ký hiệu được tạo thành sao cho đúng dạng theo các quy tắc phụ thuộc vào ngữ
**Biểu thức** (tiếng Anh: _expression_) trong ngôn ngữ lập trình là sự kết hợp của một hay nhiều giá trị, hằng số, biến, toán tử, và hàm một cách tường minh mà ngôn ngữ lập
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Một **ký hiệu toán học** là một hình hoặc tổ hợp các hình dùng để biểu diễn một vật thể toán học, một tác động lên vật thể toán học, một tương quan giữa các
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và
**N****gôn ngữ toán học** là hệ thống ngôn ngữ được sử dụng bởi các nhà toán học để truyền đạt ý tưởng toán học với nhau. Ngôn ngữ này bao gồm một nền tảng từ
**Phát biểu toán học của cơ học lượng tử** là các hình thức toán học cho phép mô tả chặt chẽ cơ học lượng tử. ## Các tiên đề #### Tiên đề 1 Nội dung
thumb|Hình mình họa cho chứng minh của Euclid về định lý Pythagoras. **Toán học Hy Lạp** là nền toán học được viết bằng tiếng Hy Lạp, phát triển từ thế kỷ 7 TCN đến thế
**Toán học của thuyết tương đối rộng** là mô hình chứa đựng cấu trúc và kỹ thuật toán học được sử dụng để nghiên cứu và thiết lập lên thuyết tương đối rộng của Einstein.
Trong toán học, một **toán hạng** là đối tượng hoặc lượng số mà phép toán đang thực hiện. ## Ví dụ Biểu thức số học sau đây cho thấy ví dụ của toán tử và
Một **mô hình toán học** là một mô hình trừu tượng sử dụng ngôn ngữ toán để mô tả về một hệ thống. Mô hình toán được sử dụng nhiều trong các ngành khoa học
Trong toán học, một **chứng minh** là một cách trình bày thuyết phục (sử dụng những chuẩn mực đã được chấp nhận trong lĩnh vực đó) rằng một phát biểu toán học là đúng đắn.
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
Trong toán học, **dãy** là một họ có thứ tự các đối tượng toán học và cho phép lặp lại các phần tử trong đó. Giống như tập hợp, nó chứa các phần tử (hay
phải|[[Miền giá trị (_feasible region_) của một bài toán quy hoạch tuyến tính được xác định bởi một tập các bất đẳng thức]] Trong toán học, một **bất đẳng thức** (tiếng Anh: Inequality) là một
right|thumb|Một ví dụ về "vẻ đẹp trong toán học" - một chứng minh đơn giản và thanh lịch về [[Định lý Pythagore.]] **Vẻ đẹp của Toán học** mô tả quan niệm rằng một số nhà
Trong toán học, thuật ngữ **tối ưu hóa** chỉ tới việc nghiên cứu các bài toán có dạng :_Cho trước:_ một hàm _f_: _A_ **R** từ tập hợp _A_ tới tập số thực :_Tìm:_
Một tập hợp hình đa giác trong một [[biểu đồ Euler]] Tập hợp các số thực (R), bao gồm các số hữu tỷ (Q), các số nguyên (Z), các số tự nhiên (N). Các số
phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một **định lý** là một mệnh đề phi hiển nhiên đã được chứng minh là
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
Trong toán học, **chuỗi** có thể được nói là, việc cộng lại vô hạn các số lại với nhau bất đầu từ số ban đầu. Chuỗi là phần quan trọng của vi tích phân và
Trong toán học, một **biểu thức dạng đóng** là một biểu thức toán học có thể được tính toán với số phép toán hữu hạn. Nó có thể chứa hằng số, biến số, một số
**Biểu thức chính quy** (tiếng Anh: _regular expression_, viết tắt là _regexp_, _regex_ hay _regxp_) là một xâu miêu tả một bộ các xâu khác, theo những quy tắc cú pháp nhất định. Biểu thức
:_Mục từ này nói về quan hệ trong toán học. Để xem các nghĩa khác, xem Quan hệ._ Trong toán học, **_quan hệ_** là một khái niệm khái quát hóa các quan hệ thường gặp,
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Nói chung, **toán học thuần túy** là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng. Đây là một loại hoạt động toán học có thể nhận biết được từ thế kỷ 19
Đây là **danh sách các nhà toán học người Do Thái**, bao gồm các nhà toán học và các nhà thống kê học, những người đang hoặc đã từng là người Do Thái hoặc có
thumb|right|Một trang từ _[[Cuốn sách Súc tích về Tính toán bởi Hoàn thiên và Cân bằng_ của Al-Khwarizmi]] Toán học trong thời đại hoàng kim của Hồi giáo, đặc biệt là trong thế kỷ 9
**Lưu Huy** (
fl. CE thế kỷ thứ 3) là một nhà toán học Trung Quốc và nhà văn sống ở nước Tào Ngụy trong Tam Quốc giai đoạn (220-280) của Trung Quốc. Năm 263, ông
Trong triết học toán học, **toán học kiến thiết** hay **chủ nghĩa kiến thiết** là tư tưởng cho rằng cần thiết phải _tìm ra_ (hoặc _xây dựng_) một vật thể toán học để khẳng định
Trong toán học, **khoảng** là một khái niệm liên quan đến dãy và tích thuộc về tập hợp của một hoặc nhiều số. ## Giới thiệu trên số thực Trên trường số thực, một **khoảng**
**Lịch sử các ký hiệu toán học** bao gồm sự khởi đầu, quá trình và sự mở rộng văn hóa của các ký hiệu toán học và mâu thuẫn của các phương pháp ký hiệu
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
Trong toán học, **một cấu trúc trên một tập hợp** (hoặc tổng quát hơn là trên một kiểu) là một hệ thống các đối tượng toán học được gắn kết với tập hợp đó theo
**_Philosophiæ Naturalis Principia Mathematica_** (tiếng Latinh nghĩa là _Các nguyên lý toán học của triết học tự nhiên_), thường gọi ngắn gọn là **_Principia_**, là tác phẩm gồm 3 tập sách do Sir Isaac Newton
thumb|[[Dấu cộng và trừ|Ký hiệu dấu cộng và trừ được sử dụng để hiển thị dấu của một số.]] Trong toán học, khái niệm của **dấu** (tiếng Anh: _sign_) bắt nguồn từ thuộc tính của
thumb|Một tập _V_ trên [[mặt phẳng là một lân cận của điểm _p_ nếu nó chứa một đĩa tròn quanh _p_.]] Trong tô-pô và những nhánh liên quan của toán học, một **lân cận** là
Trong toán học, **ràng buộc** là một điều kiện của một vấn đề tối ưu hóa mà giải pháp phải đáp ứng. Có một số loại hạn chế — chủ yếu là ràng buộc bình
Một **hằng số toán học** là một số đặc biệt, thường là một số thực, "có ý nghĩa đáng kể theo cách nào đó". Hằng số phát sinh trong nhiều lĩnh vực của toán học,
Trong toán học và vật lý, **vectơ** là một phần tử của không gian vectơ. Đối với nhiều không gian vectơ cụ thể, các vectơ nhận được tên cụ thể, được liệt kê bên dưới.
nhỏ|Các bảng số học dành cho trẻ em, Lausanne, 1835 **Số học** là phân nhánh toán học lâu đời nhất và sơ cấp nhất, được hầu hết mọi người thường xuyên sử dụng từ những
Trong logic toán, một phân ngành logic, cơ sở của mọi ngành toán học, **mệnh đề**, hay gọi đầy đủ là **mệnh đề logic** là một khái niệm nguyên thủy, không định nghĩa. Thuộc tính
Trong toán học và lập trình máy tính, **thứ tự của toán tử** (_order of operations_) hay **độ ưu tiên của toán tử** (_operator precedence_) là một tập hợp các quy tắc phản ánh quy
**Các định lý bất toàn của Gödel**, hay gọi chính xác là **Các định lý về tính bất hoàn chỉnh của Gödel** (tiếng Anh: **Gödel's incompleteness theorems**, tiếng Đức: **Gödelscher Unvollständigkeitssatz**), là hai định lý
Trong toán học, **tích** toán học là kết quả của phép nhân, hoặc là một biểu thức nhận diện các nhân tố được nhân. Ví dụ: 6 tích của 2 và 3 (kết quả của
Sổ tay toán học - sách toán - Genbooks tiếng việt, lớp 4 - lớp 9 Bộ sách bán chạy số 1 của Mỹ Khái niệm then chốt mẹo ghi nhớ Định nghĩa biểu đồ
thumb|220x124px | right|Giới hạn của hàm số :''Đây là bài viết nói chung về khái niệm giới hạn trong Toán học. Với các ứng dụng cụ thể, hãy xem các trang giới hạn dãy số
Phân biệt hàng thậtgiả Máy tính CASIO FX-580VN X là sản phẩm thuộc dòng máy ClassWiz sở hữu màn hình có độ phân giải cao vượt trội, giúp người dùng có thể dễ dàng xem
Phân biệt hàng thậtgiả Máy tính CASIO FX-580VN X là sản phẩm thuộc dòng máy ClassWiz sở hữu màn hình có độ phân giải cao vượt trội, giúp người dùng có thể dễ dàng xem
Phân biệt hàng thậtgiả Máy tính CASIO FX-580VN X là sản phẩm thuộc dòng máy ClassWiz sở hữu màn hình có độ phân giải cao vượt trội, giúp người dùng có thể dễ dàng xem