✨Dãy (toán học)

Dãy (toán học)

Trong toán học, dãy là một họ có thứ tự các đối tượng toán học và cho phép lặp lại các phần tử trong đó. Giống như tập hợp, nó chứa các phần tử (hay còn gọi là số hạng). Số các phần tử (có thể vô hạn) được gọi là độ dài của dãy số. Trái với tập hợp, một phần tử có thể xuất hiện nhiều lần trong dãy và cũng trái với tập hợp, thứ tự trong dãy cũng quan trọng. Trong định nghĩa chính thức, dãy được định nghĩa là hàm số từ tập các số tự nhiên (số vị trí các phần tử trong dãy) sang các phần tử tại vị trí đó. Thuật ngữ dãy được tổng quát hoá thành họ sắp chỉ số (họ sắp chỉ số được định nghĩa là hàm số từ một tập chỉ số tuỳ ý).

Thứ tự của phần tử trong dãy rất quan trọng. Trong dãy, có thể có một hoặc không phần tử đứng trước (hoặc sau) các phần tử còn lại, trong khi đó các phần tử còn lại sẽ luôn có ít nhất một phần tử đứng trước và ít nhất một phần tử đứng sau. Lấy ví dụ, (M, A, R, Y) là dãy các chữ cái với chữ 'M' đứng trước và chữ 'Y' đứng cuối, do đó chữ 'M' có ba phần tử đứng sau nhưng không có phần tử đứng trước. Dãy này khác với (A, R, M, Y).

Dãy (1, 1, 2, 3, 5, 8), mặc dù chứa số 1 ở hai vị trí khác nhau, vẫn được coi là một dãy hợp lệ. Một dãy có thể hữu hạn, như những ví dụ trên, hoặc vô hạn, như dãy các số nguyên dương chẵn (2, 4, 6, ...).

Vị trí của một phần tử trong dãy được gọi là số vị trí, hạng hay chỉ số. Phần tử đầu tiên có chỉ số 0 hoặc 1, dựa trên nội dung đang thảo luận. Trong giải tích,dãy số thường được đánh ký hiệu bằng các chữ cái viết thường dưới dạng a_n, b_nc_n, trong đó chữ n viết dưới chỉ phần tử thứ n trong dãy; ví dụ chẳng hạn, phần tử thứ n trong dãy Fibonacci F thường được ký hiệu là _Fn.

Trong điện toán và khoa học máy tính, dãy hữu hạn đôi khi được gọi là xâu, từ hay danh sách, các tên khác biệt với nhau thường là vì chúng tương ứng với các cách khác nhau trong biểu diễn dãy hữu hạn trong bộ nhớ máy tính; dãy vô hạn thì hay được gọi là dòng hay stream.Dãy rỗng ( ) được bao gồm trong hầu như mọi khái niệm của dãy, song có thể bỏ dựa theo bối cảnh.right|thumb|Dãy vô hạn của [[các số thực (trong màu xanh). Dãy này không tăng hay giảm, không hội tụ và cũng không có tính Cauchy. Tuy nhiên nó có bị chặn (đường đỏ nét đứt)]]

Ví dụ và ký hiệu

Dãy có thể được coi là danh sách các phần tử dưới một thứ tự cụ thể nào đó. Dãy rất hữu dụng trong một lượng lớn môn học nghiên cứu các hàm số, không gian, và các cấu trúc toán học khác có sử dụng tính hội tụ của dãy. Cụ thể, dãy là cơ sở để học và nghiên cứu chuỗi, và cả hai đều là thành phần quan trọng trong các phương trình vi phân và trong giải tích. Dãy nói riêng cũng là chủ đề thú vị của riêng chúng, một số được nghiên cứu riêng và một số được dùng để làm câu đố, ví dụ như nghiên cứu dãy các số nguyên tố.

Có nhiều cách để ký hiệu dãy, nhưng có một số trong đó chỉ có ích cho một số dãy đặc biệt. Một trong những cách đơn giản nhất để biểu diễn dãy là liệt kê các phần tử trong dãy ra. Ví dụ chẳng hạn, dãy bốn số tự nhiên lẻ đầu tiên có thể viết là (1, 3, 5, 7). Ký hiệu này cũng có thể dùng cho dãy vô hạn. Ví dụ chẳng hạn, dãy vô hạn của các số nguyên dương lẻ được viết là (1, 3, 5, 7, ...). Song vì dấu ba chấm có thể mơ hồ, nên ký hiệu liệt kê hữu dụng nhất với các dãy mà có thể nhận dạng chúng qua các phần tử đầu tiên trong dãy, các cách ký hiệu khác sẽ được thảo luận sau các ví dụ.

Các ví dụ

thumb|[[lát gạch|Lát với các ô vuông có độ dài của cạnh là số Fibonacci liên tiếp]]

Các số nguyên tố là các số tự nhiên lớn hơn 1 và không có ước nào ngoại trừ 1 và chính nó. Xét chúng trong thứ tự tự nhiên, ta được dãy (2, 3, 5, 7, 11, 13, 17, ...). Các số nguyên tố được nghiên cứu rộng rãi trong toán học, chủ yếu nằm trong lý thuyết số với nhiều kết quả quan trọng gắn với nó.

Các số Fibonacci tạo thành một dãy trong đó ngoại trừ phần từ đầu tiên và phần tử thứ hai trong dãy, mỗi phần tử còn lại đều là tổng của hai phần tử đứng ngay trước nó. Hai phần tử đầu tiên có thể la 0 và 1 hoặc 1 và 1. Dãy các số Fibonacci được gọi là dãy Fibonacci và thường được viết như sau (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...).

Cách viết chỉ số

Các cách ký hiệu khác có ích đối với các dãy có mẫu nhận dạng không dễ đoán hoặc không có ngay từ đầu như dãy các chữ số của . Một trong những cách ký hiệu là viết một công thức tổng quát để tính phần tử thứ n trong dãy là hàm số của n, đóng nó trong dấu ngoặc rồi bao gồm thêm một đoạn chữ nhỏ viết dưới chỉ ra các tập các giá trị mà n có thể nhận. Lấy ví dụ, trong ký hiệu này, dãy các số tự nhiên chẵn có thể ký hiệu thành (2n){n\in\mathbb N}. Dãy các số chính phương có thể viết là (n^2){n\in\mathbb N}. Biến n được gọi là chỉ số, và tập các giá trị nó có thể nhận được được gọi là tập chỉ số.

Bằng việt kết hợp cách ký hiệu này với kỹ thuật coi các phần tử trong dãy là các biến độc lập. Ta có thể viết các biểu thức như (an){n\in\mathbb N}, biểu thức này ký hiệu dãy trong đó phần tử thứ n lấy từ biến a_n. Ví dụ: :\begin{align} a_1 &= \text{phần tử thứ }1 \ \text{của} \ (an){n\in\mathbb N} \ a_2 &= \text{phần tử thứ }2 \ a3 &= \text{phần tử thứ }3 \ &\;\;\vdots \ a{n-1} &= \text{phần tử thứ }n-1 \ an &= \text{phần tử thứ }n \ a{n+1} &= \text{phần tử thứ }n+1\ &\;\; \vdots \end{align} Bên cạnh đó, ta còn có thể xét nhiều dãy khác nhau trong cùng một lúc bằng cách sử dụng tên biến khác; chẳng hạn (bn){n\in\mathbb N} có thể là dãy khác với (an){n\in\mathbb N}. Ta cũng có thể xét dãy của các dãy: ((a{m, n}){n\in\mathbb N})_{m\in\mathbb N} ký hiệu dãy trong đó phần tử thứ m là dãy (a{m, n}){n\in\mathbb N}.

Một cách khác để viết miền trong đoạn viết dưới của dãy là viết khoảng giá trị mà nó có thể nhận bằng cách chỉ ra giá trị nhỏ nhất và lớn nhất nó có thển hận. Ví dụ chẳng hạn, ký hiệu (k^2)_{k = 1}^{10} chỉ dãy 10 số chính phương (1, 4, 9, \ldots, 100). Các giới hạn \infty-\infty đều được cho phép, nhưnng nó không biểu diễn giá trị hợp lệ cho chỉ số, mà chỉ là cận trên đúng hay cận dưới đúng của các giá trị đó, tương ứng. Ví dụ chẳng hạn, dãy (an){n = 1}^\infty giống với dãy (an){n\in\mathbb N}, và không chứa phần tử nào "tại vô hạn". Dãy (an){n = -\infty}^\infty là dãy vô hạn hai bên, và được ký hiệu theo liệt kê là (\ldots, a_{-1}, a_0, a_1, a_2, \ldots).

Trong trường hợp tập các chỉ số đã được ngầm hiểu trước, thì có thể bỏ cả đoạn chỉ số trên và dưới. Khi đó, ta thường hiểu (a_k) ký hiệu cho một dãy tuỳ ý. Thường thì chỉ số k được ngầm định chạy từ 1 đến ∞. Tuy nhiên, các dãy thường có chỉ số bắt đầu từ 0, tức là :(ak){k=0}^\infty = ( a_0, a_1, a_2, \ldots ). Trong một số trường hợp khi các phần tử trong dãy có quan hệ gần gũi với các số tự nhiên và có mẫu nhận dạng dễ nhìn, thì tập chỉ số có thể suy ra được bằng cách liệt kê vài phần tử đầu tiên. Lấy ví dụ, tập các bình phương của các số lẻ có thể ký hiệu theo một trong năm cách sau.

  • (1, 9, 25, \ldots)
  • (a_1, a_3, a_5, \ldots), \qquad a_k = k^2
  • (a_{2k-1})_{k=1}^\infty, \qquad a_k = k^2
  • (a_{k})_{k=1}^\infty, \qquad a_k = (2k-1)^2
  • \left((2k-1)^2\right)_{k=1}^\infty

Hơn nữa, đoạn chỉ số dưới và trên có thể bỏ đi trong cách thứ ba, thứ tư và thứ năm, nếu tập chỉ số đã được hiểu là tập các số tự nhiên. Trong cách thứ hai và thứ ba, có dãy đã được định nghĩa (a{k}){k=1}^\infty, nhưng nó không giống với dãy ký hiệu theo biểu thức.

Định nghĩa dãy bằng đệ quy

Dãy mà phần tử có quan hệ với phần tử đứng trước nó thường được định nghĩa bằng đệ quy. Cách định nghĩa này khác với định nghĩa dãy có các phần tử là giá trị của hàm số của vị trí của chúng.

Để có thể định nghĩa bằng đệ quy, ta cần một luật, hay quy tắc, được gọi là quan hệ lặp lại để xây dựng mỗi phần tử trong dãy dựa trên các phần tử đứng trước đó. Bên cạnh đó yêu cầu cần phải định nghĩa hay xác định trước phần tử đứng đầu (hay còn gọi là phần tử khởi tạo) để các phần tử đứng sau có thể được tính bằng quan hệ. Công thức suy ra được từ quan hệ đó được gọi là công thức truy hồi hoặc hệ thức truy hồi.

Dãy Fibonacci là một ví dụ hay thường gặp, và được định nghĩa theo công thức truy hồi sau :an = a{n-1} + a_{n-2}, với hai phần tử ban đầu a_0 = 0a_1 = 1. Qua vài bước tính toán, 10 phần tử đầu tiên của dãy này sẽ là 0, 1, 1, 2, 3, 5, 8, 13, 21, và 34.

Một ví dụ phức tạp về dãy được định nghĩa theo quan hệ đệ quy là dãy Recamán,, dãy này được định nghĩa như sau: :\begin{cases}an = a{n-1} - n,\quad \text{nếu kết quả dương và hiện chưa có trong dãy}\an = a{n-1} + n, \quad\text{ngược lại}, \end{cases} với phần tử khởi tạo a_0 = 0.

Hệ thức truy hồi tuyến tính có hệ số hằng là công thức có dạng :a_n=c_0 +c1a{n-1}+\dots+ck a{n-k}, trong đó c_0,\dots, c_k là các hằng số. Có công thức tổng quát để biểu diễn các phần tử a_n thành hàm số của ; xem truy hồi tuyến tính. Trong trường hợp của dãy Fibonacci, ta có c_0=0, c_1=c_2=1, và hàm của lấy từ công thức Binet.

Dãy holonom là dãy được định nghĩa bằng công thức hồi quy dưới dạng :a_n=c1a{n-1}+\dots+ck a{n-k}, trong đó c_1,\dots, c_k là các đa thức biến . Hầu như đối với mọi dãy holonom không có công thức cụ thể nào để biểu diễn a_n bằng hàm số của . Mặc dù vậy, các dãy holonom vẫn đóng vai trò quan trọng trong nhiều nhánh của toán học. Ví dụ chẳng hạn, nhiều hàm đặc biệt có chuỗi Taylor với các hệ số là phần tử của dãy holonom. Sử dụng đệ quy cho phép tính nhanh chóng giá trị của các hàm đặc biệt đó.

Không phải mọi dãy đều có thể định nghĩa bằng đệ quy. Một ví dụ là dãy các số nguyên tố theo thứ tự tự nhiên (2, 3, 5, 7, 11, 13, 17, ...).

Định nghĩa

Theo quan điểm của lý thuyết tập hợp, dãy là một ánh xạ a: X \to Y, trong đó X là tập hợp số tự nhiên, hoặc tập con của tập số tự nhiên nhỏ hơn / lớn hơn một số tự nhiên m nào đó. Khi đó thay cho a(n) ta dùng ký hiệu an. ::an=a(n) Nếu X là hữu hạn ta có dãy hữu hạn: :: an1,...,an. Ngược lại nó được xem là vô hạn. :: a1,a2,...,an,... Đôi khi, dãy hữu hạn cũng có thể được xem là vô hạn với các phần tử thừ thứ m trở đi là bằng nhau.

Nếu Y là tập hợp số, dãy a được gọi là dãy số. Nếu Y là tập các số thực (hoặc phức) ta có dãy số thực (hoặc phức) Nếu Y là tập hợp các hàm số ta có dãy hàm. Nếy Y là tập hợp số tự nhiên ta có dãy số tự nhiên (ít dùng) Khi bắt đầu từ phần tử a_{n_0} dãy thường được ký hiệu: :(xn){n \ge n_0 } với xn là phần tử thứ n.

Người ta thường xét hơn các dãy bắt đầu từ phần tử a_1. :(xn){n \ge 1 } với xn là phần tử thứ n

Dãy hữu hạn

Khi các phần tử của dãy nhận giá trị trong một tập hữu hạn n phần tử, các bài toán về dãy hữu hạn được xem xét trong toán học tổ hợp (với các khái niệm chỉnh hợp, hoán vị, dãy có lặp,...) gồm bài toán đếm, bài toán liệt kê và bài toán tồn tại.

  • Bài toán đếm: đếm số các dãy (hữu han) của một tập hợp thoả mãn một hoặc một số tính chất nào đó.
  • Bài toán liệt kê:liệt kê toàn bộ các dãy (hữu hạn) của một tập hợp thoả mãn một hoặc một số tính chất nào đó.
  • Bài toán tòn tại: xét xem các dãy (hữu hạn) của một tập hợp thoả mãn một hoặc một số tính chất nào đó có tốn tại không?

Dãy vô hạn

Khi các phần tử của một dãy vô hạn thuộc một không gian metric (trong không gian có khái niệm khoảng cách giữa hai phần tử) chẳng hạn các dãy số thực,dãy hàm hoặc không gian tôpô (trong đó có khái niệm lân cận) các bài toán về dãy liên quan tới khái niệm giới hạn, tính hội tụ, phân kỳ.

Dãy trong khoa học học máy tính

Trong khoa học máy tính, khái niệm dãy (hữu hạn) thể hiện cụ thể thành các danh sách (tuyến tính), mảng, ngăn xếp, hàng đợi... là những cấu trúc dữ liệu quan trọng. Các khái niệm về giải thuật, máy Turing cũng đều liên quan đến các dãy.

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong toán học, **dãy** là một họ có thứ tự các đối tượng toán học và cho phép lặp lại các phần tử trong đó. Giống như tập hợp, nó chứa các phần tử (hay
Trong toán học, **khoảng** là một khái niệm liên quan đến dãy và tích thuộc về tập hợp của một hoặc nhiều số. ## Giới thiệu trên số thực Trên trường số thực, một **khoảng**
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và
**Toán học của thuyết tương đối rộng** là mô hình chứa đựng cấu trúc và kỹ thuật toán học được sử dụng để nghiên cứu và thiết lập lên thuyết tương đối rộng của Einstein.
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
Sự phát triển của Toán học cả về mặt tổng thể lẫn các bài toán riêng lẻ là một chủ đề được bàn luận rộng rãi - nhiều dự đoán trong quá khứ về toán
Trong toán học, thuật ngữ **tối ưu hóa** chỉ tới việc nghiên cứu các bài toán có dạng :_Cho trước:_ một hàm _f_: _A_ \to **R** từ tập hợp _A_ tới tập số thực :_Tìm:_
Trong toán học, **chuỗi** có thể được nói là, việc cộng lại vô hạn các số lại với nhau bất đầu từ số ban đầu. Chuỗi là phần quan trọng của vi tích phân và
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
**Lưu Huy** (fl. CE thế kỷ thứ 3) là một nhà toán học Trung Quốc và nhà văn sống ở nước Tào Ngụy trong Tam Quốc giai đoạn (220-280) của Trung Quốc. Năm 263, ông
Một **ký hiệu toán học** là một hình hoặc tổ hợp các hình dùng để biểu diễn một vật thể toán học, một tác động lên vật thể toán học, một tương quan giữa các
Toán học không có định nghĩa được chấp nhận chung. Các trường phái tư tưởng khác nhau, đặc biệt là trong triết học, đã đưa ra các định nghĩa hoàn toàn khác nhau. Tất cả
Một tập hợp hình đa giác trong một [[biểu đồ Euler]] Tập hợp các số thực (R), bao gồm các số hữu tỷ (Q), các số nguyên (Z), các số tự nhiên (N). Các số
phải|nhỏ|Một chu kỳ con lắc là đẳng thời, thực tế được phát hiện và chứng minh bởi [[Christiaan Huygens theo các giả định toán học. ]] phải|nhỏ|240x240px|Toán học được phát triển bởi người [[Hy Lạp
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
Môn học **toán học vật lý** liên quan đến **toán học** có liên quan đến động lực vật lý và khác với vật lý toán học. _Tạp chí toán học vật lý_ là một tạp
phải|nhỏ|260x260px|Một tiết dạy toán tại [[Trường Khoa học và Công nghệ Đại học Aalto]] Trong giáo dục đương đại, **giáo dục** **toán học** là thực hành dạy và học toán học, cùng với các nghiên
phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một **định lý** là một mệnh đề phi hiển nhiên đã được chứng minh là
nhỏ|phải|Logo của ban tổ chức cuộc thi IMO (International Mathematical Olympiad) **Olympic Toán học Quốc tế** (tiếng Anh: _International Mathematical Olympiad_, thường được viết tắt là **IMO**) là một kì thi Toán học cấp quốc
Trong toán học, cụ thể là trong tô pô đại cương và các ngành liên quan, **lưới** hay còn gọi là **dãy Moore-Smith** là một khái niệm mở rộng của dãy. Về bản chất, một
Nói chung, **toán học thuần túy** là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng. Đây là một loại hoạt động toán học có thể nhận biết được từ thế kỷ 19
thumb|Hình mình họa cho chứng minh của Euclid về định lý Pythagoras. **Toán học Hy Lạp** là nền toán học được viết bằng tiếng Hy Lạp, phát triển từ thế kỷ 7 TCN đến thế
nhỏ|Khu vực hấp dẫn kỳ lạ phát sinh từ một [[phương trình vi phân. Phương trình vi phân là một lĩnh vực quan trọng của giải tích toán học với nhiều ứng dụng cho khoa
**Hội liên hiệp Toán học Quốc tế**, viết tắt theo tiếng Anh là **IMU** (_International Mathematical Union_) là một tổ chức phi chính phủ - phi lợi nhuận quốc tế nhằm thúc đẩy việc hợp
**Toán học thực nghiệm** là một cách tiếp cận toán học trong đó tính toán được sử dụng để điều tra các đối tượng toán học và xác định các thuộc tính và mẫu. Nó
**Phát biểu toán học của cơ học lượng tử** là các hình thức toán học cho phép mô tả chặt chẽ cơ học lượng tử. ## Các tiên đề #### Tiên đề 1 Nội dung
:_Mục từ này nói về quan hệ trong toán học. Để xem các nghĩa khác, xem Quan hệ._ Trong toán học, **_quan hệ_** là một khái niệm khái quát hóa các quan hệ thường gặp,
thumb|right|Các giải pháp của [[phương trình Schrödinger trong cơ học lượng tử cho Dao động tử điều hòa, cùng với các biên độ bên phải. Đây là một ví dụ của toán lý.]] **Vật lý
Đây là **danh sách các nhà toán học người Do Thái**, bao gồm các nhà toán học và các nhà thống kê học, những người đang hoặc đã từng là người Do Thái hoặc có
**Giải Toán học Ruth Lyttle Satter** () hay **Giải Satter** () là một trong hai mươi mốt giải thưởng được trao bởi Hội Toán học Hoa Kỳ (AMS) và được trao hai năm một lần
Một **mô hình toán học** là một mô hình trừu tượng sử dụng ngôn ngữ toán để mô tả về một hệ thống. Mô hình toán được sử dụng nhiều trong các ngành khoa học
**Viện Toán học** là cơ quan nghiên cứu chuyên sâu cơ bản về toán học trực thuộc Viện Khoa học và Công nghệ Việt Nam (VAST). Viện được thành lập năm 1969 theo Nghị định
**Hội Toán học Hoa Kỳ** (tiếng Anh: _American Mathematical Society_, viết tắt là AMS) là một Hội các nhà toán học chuyên nghiệp nhằm thúc đẩy việc nghiên cứu phát triển Toán học. Hội xuất
**N****gôn ngữ toán học** là hệ thống ngôn ngữ được sử dụng bởi các nhà toán học để truyền đạt ý tưởng toán học với nhau. Ngôn ngữ này bao gồm một nền tảng từ
Sau đây là danh sách các nhà toán học người Iran bao gồm cả người thuộc các dân tộc Iran. ## A * Athir al-Din al-Abhari (?–1262/1265) * Abu Nasr-e Mansur (khoảng 960–1036) * Abū
Trong toán học, thuật ngữ **mầm** của một đối tượng trong/trên không gian tô pô là lớp tương đương của đối tượng đó và các đối tượng khác cùng loại và chúng đều có chung
Trong toán học, **một cấu trúc trên một tập hợp** (hoặc tổng quát hơn là trên một kiểu) là một hệ thống các đối tượng toán học được gắn kết với tập hợp đó theo
**_Toán học là gì?_**, với phụ đề **_Phác thảo sơ cấp về tư tưởng và phương pháp_** (tên tiếng Anh: _What is mathematics? An Elementary Approach to Ideas and Methods_) là cuốn sách toán học
Đây là danh sách các nhà toán học Mỹ. ## Danh sách * James Waddell Alexander II (1888–1971) * Stephanie B. Alexander, được bầu vào năm 2014 với tư cách là thành viên của Hiệp
**Lịch sử các ký hiệu toán học** bao gồm sự khởi đầu, quá trình và sự mở rộng văn hóa của các ký hiệu toán học và mâu thuẫn của các phương pháp ký hiệu
thumb|right|Một trang từ _[[Cuốn sách Súc tích về Tính toán bởi Hoàn thiên và Cân bằng_ của Al-Khwarizmi]] Toán học trong thời đại hoàng kim của Hồi giáo, đặc biệt là trong thế kỷ 9
**William Jones**, FRS (1675 - 3 tháng 7 năm 1749 [1]) là một trong những người của xứ Wales, tình yêu của họ 1 vòng vòng vì vậy Ông là bạn của Ngài Isaac Newton
Bốn năm một lần, Hội liên hiệp Toán học quốc tế tổ chức Đại hội Toán học quốc tế. Trong buổi lễ mở màn, huy chương Fields, giải thưởng Nevanlinna, giải thưởng Gauss và huy
Do quy định của kì thi chọn học sinh giỏi quốc gia Việt Nam, thí sinh Việt Nam chỉ có thể tham gia nhiều nhất là ba kì Olympic Toán học Quốc tế (IMO) (năm
**Hội Toán học Iran** (IMS) là tổ chức toán học ở Iran. Tổ chức chính thức đăng ký hoạt động vào năm 1971 bởi Giáo sư Mehdi Behzad, chủ tịch đầu tiên của IMS. Chủ
thumb|Một tập _V_ trên [[mặt phẳng là một lân cận của điểm _p_ nếu nó chứa một đĩa tròn quanh _p_.]] Trong tô-pô và những nhánh liên quan của toán học, một **lân cận** là
Dưới đây là **danh sách quốc gia và vùng lãnh thổ theo thành tích huy chương đạt được tại Olympic Toán học Quốc tế** (IMO): _Lưu ý:_ * Danh sách trong bài sẽ chỉ bao
Đây là **danh sách các nhà toán học Đức**: ## A * Ilka Agricola * Rudolf Ahlswede * Wilhelm Ahrens * Oskar Anderson * Karl Apfelbacher * Philipp Apian * Petrus Apianus * Michael Artin