Trong toán học, đặc biệt là trong lý thuyết tập hợp, tích Descartes (hay tích Đềcác, tích trực tiếp) của hai tập hợp A và B, ký hiệu là A×B, là một tập hợp chứa tất cả các bộ có dạng (a, b) với a là một phần tử của A và b là một phần tử của B. Hay, viết trong ngôn ngữ của lý thuyết tập hợp:
:
Ví dụ, nếu:
:A = {1,2}
:B = {p,q,r}
thì:
:A×B = {(1,p),(1,q),(1,r),(2,p),(2,q),(2,r)}
và:
:B×A = {(p,1),(q,1),(r,1),(p,2),(q,2),(r,2)}
Như vậy tích Descartes của 2 tập hợp là một phép toán 2 ngôi trên các tập hợp. Có thể mở rộng định nghĩa tích Descartes của nhiều tập hợp A1×A2×...×An là tập hợp chứa tất cả các bộ có dạng (a1,a2,...,an) với ai là một phần tử của Ai (i = 1, 2,..., n). Hay, viết trong ngôn ngữ của lý thuyết tập hợp:
:
Lịch sử
Tên gọi tích Descartes được lấy theo tên của nhà toán học người Pháp René Descartes, dựa trên đóng góp của ông cho đại số giải tích
Tính chất
- Theo ví dụ ở đầu bài viết, tích Descartes là phép toán không có tính giao hoán. Phép toán này có tính chất kết hợp.
Lực lượng (số phần tử) của tích Descartes bằng tích của lực lượng của từng tập hợp:
:|A1×...×An| = |A1|×...×|An|
Trong ví dụ ở đầu bài viết, |A| = 2, |B| = 3 và ta thấy |A×B| = 2×3 = 6.
- Tích Descartes giữa hai tập (hoặc một số hữu hạn tập) đếm được là đếm được
Lũy thừa Descartes
Ta có lũy thừa bậc 2 Descartes (hay bình phương Descartes) của tập hợp A được định nghĩa là tích Descartes của A với A:
:A2 = A×A
Tương tự, lũy thừa Descartes bậc n là tích Descartes của n tập A:
:An = A×A×...×A
(có n tập A ở vế phải)
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong toán học, đặc biệt là trong lý thuyết tập hợp, **tích Descartes** (hay **tích Đềcác, tích trực tiếp**) của hai tập hợp _A_ và _B_, ký hiệu là _A_×_B_, là một tập hợp chứa
**Tích phân bội** là một loại tích phân xác định được mở rộng cho các hàm có nhiều hơn một biến thực, ví dụ, _ƒ_(_x_, _y_) hoặc _ƒ_(_x_, _y_, _z_). Các tích phân của một
Trong toán học, cho hai không gian đo và các phép đo trên chúng, người ta có thể nhận được một k**hông gian đo tích** và một **phép đo tích** trên không gian đó. Về
Một **Hệ tọa độ Descartes** (tiếng Anh: **Cartesian coordinate system**) xác định vị trí của một điểm (_point_) trên một mặt phẳng (_plane_) cho trước bằng một cặp số tọa độ (_x_, _y_). Trong đó,
right|thumb|alt=Three shapes on a square grid|Tổng diện tích của 3 hình xấp xỉ 15.57 hình vuông đơn vị **Diện tích** là đại lượng biểu thị phạm vi của hình hoặc hình hai chiều hoặc lamina
Trong toán học, **tích rỗng** là kết quả của phép nhân không nhân tử. Theo quy ước tích rỗng bằng nhân tử đơn vị (nếu như phép nhân đang xét có đơn vị), cũng giống
nhỏ|Hình học giải tích **Hình học giải tích**, cũng được gọi là **hình học tọa độ** hay **hình học Descartes**, là môn học thuộc hình học sử dụng những nguyên lý của đại số. Thường
Trong toán học, **tích** toán học là kết quả của phép nhân, hoặc là một biểu thức nhận diện các nhân tố được nhân. Ví dụ: 6 tích của 2 và 3 (kết quả của
nhỏ|Tích vô hướng hình học, định nghĩa bởi góc. **Tích vô hướng** (tên tiếng Anh: **dot product** hoặc **scalar product**) là một phép toán đại số lấy hai chuỗi số có độ dài bằng nhau
Trong tô pô và các ngành toán học liên quan, **không gian tích** là tích Descartes của một họ không gian tô pô được trang bị một tôpô gọi là **tô pô tích**. Tô pô
nhỏ|Minh họa kết quả phép nhân vectơ trong [[hệ tọa độ bên phải]] Trong toán học, phép **tích vectơ** hay **nhân vectơ** hay **tích có hướng** là một phép toán nhị nguyên trên các vectơ
**René Descartes** (1596–1650) là triết gia, nhà khoa học, nhà toán học người Pháp, thường được xem là cha đẻ của triết học hiện đại. Ông sinh ngày 31 tháng 3 năm 1596 tại La
phải|nhỏ|300x300px|Hệ [[Hệ tọa độ cầu|tọa độ cầu được sử dụng phổ biến trong _vật lý_ . Nó gán ba số (được gọi là tọa độ) cho mọi điểm trong không gian Euclide: khoảng cách xuyên
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
thumb|Hình minh họa tiên đề chọn, với mỗi và lần lượt biểu diễn một bình và một viên bi thumb| là một [[họ chỉ số vô hạn các tập hợp với tập chỉ số là
**Đồ thị của hàm số** _f_ trong toán học là tập hợp tất cả các cặp có thứ tự . Nếu đầu vào _x_ là một cặp có thứ tự các số thực thì đồ
Một tập hợp hình đa giác trong một [[biểu đồ Euler]] Tập hợp các số thực (R), bao gồm các số hữu tỷ (Q), các số nguyên (Z), các số tự nhiên (N). Các số
**Nhóm lũy linh** cùng với nhóm giải được là các cấu trúc cơ bản của đại số trừu tượng. ## Định nghĩa ### Chuỗi tâm trên Tồn tại một nhóm là _lũy linh_ nếu
right|thumb|upright=1.15|**Hình 1.** [[Hasse diagram|Biểu đố Hasse của tập hợp các tập con của tập ba phần tử dưới thứ tự là tập con của. Các tập hợp nối với nhau theo đường
:_Mục từ này nói về quan hệ trong toán học. Để xem các nghĩa khác, xem Quan hệ._ Trong toán học, **_quan hệ_** là một khái niệm khái quát hóa các quan hệ thường gặp,
|nhỏ|300x300px|Trong [[không gian Euclide ba chiều, ba mặt phẳng này biểu diễn các nghiệm của phương trình tuyến tính, và giao tuyến của chúng biểu thị tập các nghiệm chung: trong trường hợp này là
phải|Không gian ba chiều [[Hệ tọa độ Descartes với trục _x_ hướng về người quan sát.]] **Không gian ba chiều** là một mô hình hình học có ba (3) thông số (tọa độ, không tính
Trong đại số tuyến tính, hai vectơ trong một không gian tích trong là **trực chuẩn** nếu chúng trực giao (hay vuông góc) và đều là vectơ đơn vị. Một tập hợp vectơ tạo thành
Trong toán học, một **hàm số** hay gọi ngắn là **hàm** (Tiếng Anh: _function_) là một loại ánh xạ giữa hai tập hợp số liên kết mọi phần tử của tập số đầu tiên với
Trong toán học và vật lý, **toán tử Laplace** hay **Laplacian**, ký hiệu là hoặc được đặt tên theo Pierre-Simon de Laplace, là một toán tử vi phân, đặc biệt trong các toán
**Edmund Gustav Albrecht Husserl** (;; phiên âm tiếng Việt: **Étman Huxéc**; 8 tháng 4 năm 1859 – 27 tháng 4 năm 1938) là một nhà triết học vô thần và toán học Đức-Do Thái có
**Tâm trí** là tập hợp các lĩnh vực bao gồm các khía cạnh nhận thức như ý thức, trí tưởng tượng, nhận thức, suy nghĩ, trí thông minh, khả năng phán quyết, ngôn ngữ và
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Trong toán học, **tập có hướng** (hay **tiền thứ tự có hướng** hay **tập bị lọc** và đôi khi **tập được định hướng**) là một tập hợp khác rỗng kèm theo một quan hệ
Trong hình học, **độ cong** thể hiện sự lệch hướng tại một điểm trên đường cong, mặt cong hay không gian Riemann nói chung. ## Độ cong của một đường cong ### Định nghĩa Theo
right|thumb|Đồ thị Cayley của [[nhóm tự do trên hai phần tử sinh _a_ và _b_]] Trong toán học, **đồ thị Cayley**, hay còn gọi là **đồ thị tô màu Cayley**, **biểu đồ Cayley**, **biểu đồ
nhỏ|Các loại đường conic:
* [[Parabol
* Elíp và đường tròn
* Hyperbol]] Ellipse (_e_=1/2), parabol (_e_=1) và hyperbol (_e_=2) với tiêu điểm _F_ và đường chuẩn. Bảng conic, _[[Cyclopaedia_, 1728]] Trong toán học, một
Trong toán học, **hyperbol** hay **hypecbol** (từ tiếng Hy Lạp: ὑπερβολή, nghĩa đen là "vượt quá" hay "thái quá") là một kiểu Đường cô-nic, được định nghĩa là đường giao của một mặt nón với
**Đại số quan hệ** (tiếng Anh: _relational algebra_) dùng phổ biến trong lý thuyết cơ sở dữ liệu quan hệ là một bộ các toán tử và các quy tắc tương ứng có thể được
**Tập hợp đếm được** (hay tập hợp có lực lượng đếm được) trong toán học được định nghĩa là tập hợp có thể thiết lập một đơn ánh vào tập hợp số tự nhiên. Điều
**Đường thẳng** là một khái niệm nguyên thủy không định nghĩa, được sử dụng làm cơ sở để xây dựng các khái niệm toán học khác. Đường thẳng được hiểu là một đối tượng hình
**Sir Isaac Newton** (25 tháng 12 năm 1642 – 20 tháng 3 năm 1726 (lịch cũ)) là một nhà toán học, nhà vật lý, nhà thiên văn học, nhà thần học, và tác giả (ở thời
Trong Toán học, Vật lí và kĩ thuật, **vectơ** hay **hướng lượng** (theo phiên âm Hán Việt) (tiếng Anh: _vector_) là một đoạn thẳng có hướng. Đoạn thẳng này biểu thị phương, chiều và độ
nhỏ|200x200px| Biểu đồ của một hàm, được vẽ bằng màu đen và một đường tiếp tuyến của hàm đó, được vẽ bằng màu đỏ. Độ dốc của đường tiếp tuyến bằng với đạo hàm của
nhỏ|[[Đồ thị của hàm số (màu đen) và tiếp tuyến của nó (màu đỏ). Hệ số góc của tiếp tuyến bằng đạo hàm của hàm đó tại tiếp điểm (điểm được đánh dấu).]] Trong toán
phải|Một tia đi qua gốc của hyperbol cắt hyperbol tại điểm , với là 2 lần diện tích của hình giới hạn bởi tia và trục
Trong toán học, một **quan hệ hai ngôi** (hay còn gọi là _quan hệ nhị phân_) trên hai tập _A_ và _B_ là một tập các cặp được sắp (_a_, _b_), chứa các phần tử
304x304px|nhỏ|Một lăng trụ tam giác trong 3D. Trong hình học, hình **lăng trụ tam giác** là hình lăng trụ có ba mặt bên; nó là một khối đa diện được hình thành từ một đáy
Trong giải tích vectơ, **toán tử div** hay **toán tử phân kỳ** hay **suất tiêu tán** là một toán tử đo mức độ phát (ra) hay thu (vào) của trường vectơ tại một điểm cho
nhỏ|phải|Mặt cầu với các trục Trong không gian metric ba chiều, **mặt cầu** là quỹ tích những điểm cách đều một điểm O cố định cho trước một khoảng không đổi R. Điểm O gọi
**Bán kính cong** của một đường cong tại một điểm là bán kính của một cung tròn trùng đường cong nhất tại điểm đó. Nó là nghịch đảo của độ cong . :
thumb|[[Hình học giải tích gán mỗi điểm trong mặt phẳng Euclid một cặp được sắp. Đường elip đỏ tương ứng với tập các cặp (_x_,_y_) sao cho+_y_2=1.]] Trong toán học, **cặp được sắp** (hay **cặp
phải|nhỏ| Một nhát cắt của một phân thớ . Một nhát cắt cho phép không gian cơ sở được đồng nhất với một không gian con của . phải|nhỏ|
**Cực trị của hàm số** là giá trị mà hàm số đổi chiều biến thiên khi qua đó. Trong hình học, nó biểu diễn khoảng cách lớn nhất từ điểm này sang điểm kia và
Trong khoa học máy tính, một **bản ghi** (còn được gọi là **mẫu tin**, **cấu trúc**, **struct** hoặc **dữ liệu phức hợp**, tiếng Anh: **record**) là một cấu trúc dữ liệu cơ bản. Bản ghi