✨Hình học giải tích

Hình học giải tích

nhỏ|Hình học giải tích Hình học giải tích, cũng được gọi là hình học tọa độ hay hình học Descartes, là môn học thuộc hình học sử dụng những nguyên lý của đại số. Thường sử dụng hệ tọa độ Descartes cho những phương trình theo mặt phẳng, đường, đường cong, và đường tròn, nhiều khi có hai hay ba chiều đo. Theo một số người, hình học giải tích là nguồn gốc của toán học hiện đại.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
nhỏ|Hình học giải tích **Hình học giải tích**, cũng được gọi là **hình học tọa độ** hay **hình học Descartes**, là môn học thuộc hình học sử dụng những nguyên lý của đại số. Thường
Toán Cao Cấp Tập 1 Bài Tập Toán Cao Cấp Tập 1 - Đại Số Và Hình Học Giải Tích Nội dung gồm có 1. Tập hợp. Ánh xạ 2. Một số cấu trúc đại
Bộ Sách Toán Cao Cấp Tập 3 Bài Tập Toán Cao Cấp Tập 3 Phép Tính Giải Tích Nhiều Biến Số Nội dung gồm có Chương 1. Hàm số nhiều biến số Chương 2. Ứng
nhỏ|Hình [[tứ diện, một đối tượng thường gặp trong các bài toán hình học không gian.]] Trong toán học và hình học, **hình học không gian** là một nhánh của hình học nghiên cứu các
thumb|Bảng các yếu tố trong hình học, trích từ cuốn _[[Cyclopaedia_ năm 1728.]] **Hình học** (geometry) bắt nguồn từ ; _geo-_ "đất", _-metron_ "đo đạc", nghĩa là đo đạc đất đai, là ngành toán học
thumb|Bức họa _[[Trường học Athena_ của Raffaello miêu tả các nhà toán học Hy Lạp (có thể là Euclid hoặc Archimedes) đang dùng compa để dựng hình.]] **Hình học Euclid** (còn gọi là **hình học
Trong toán học, **hình học phức** là ngành nghiên cứu về các đa tạp phức, các đa tạp đại số phức và các hàm biến phức. Các phương pháp chủ đạo bao gồm hình học
nhỏ|[[Đồ thị Cayley của nhóm tự do có hai phần tử sinh. Đây là nhóm hyperbol có biên Gromov là tập Cantor. Tương tự với đồ thị Cayley, nhóm hyperbol và biên của nó là
nhỏ|Tích vô hướng hình học, định nghĩa bởi góc. **Tích vô hướng** (tên tiếng Anh: **dot product** hoặc **scalar product**) là một phép toán đại số lấy hai chuỗi số có độ dài bằng nhau
**Phân tích hình học** (hay còn được gọi là **giải tích hình học**) là một nguyên lý toán học tại giao diện giữa hình học vi phân và các phương trình vi phân. Nó bao
Nội dung gồm Chương I Tập hợp và ánh xạ. Chương II Cấu trúc đại số - số phức - đa thức và phân thức hữu tỉ. Chương III Ma trận - định thức -
nhỏ|Khu vực hấp dẫn kỳ lạ phát sinh từ một [[phương trình vi phân. Phương trình vi phân là một lĩnh vực quan trọng của giải tích toán học với nhiều ứng dụng cho khoa
nhỏ|phải|Diện tích của mỗi hình vuông màu tím trong hình bằng 1/4 diện tích của hình vuông nằm kế bên trái của nó (1/2×=1/4, 1/4×1/4=1/16). Tổng diện tích của tất cả các hình vuông này
nhỏ|Ý nghĩa hình học Trong hình học phẳng sơ cấp, **phương tích của một điểm** là một số thực thể hiện khoảng cách tương đối của điểm đó đối với một đường tròn cho trước.
**Giải tích phức**, hay còn gọi là **lý thuyết hàm biến phức**, là một nhánh của toán học nghiên cứu các hàm số biến phức. Giải tích phức có nhiều ứng dụng trong nhiều ngành
phải|nhỏ|300x300px|Hệ [[Hệ tọa độ cầu|tọa độ cầu được sử dụng phổ biến trong _vật lý_ . Nó gán ba số (được gọi là tọa độ) cho mọi điểm trong không gian Euclide: khoảng cách xuyên
phải|Một tam giác nhúng trên mặt yên ngựa (mặt [[hyperbolic paraboloid), cũng như hai đường thẳng _song song_ trên nó.]] **Hình học vi phân** là một nhánh của toán học sử dụng các công cụ
Trong giải tích phức, một nhánh của toán học, **thác triển giải tích** là một kỹ thuật để mở rộng miền xác định của một hàm giải tích nhất định. ## Thảo luận khởi đầu
**Giải tích hàm** là một ngành của giải tích toán học nghiên cứu các không gian vector được trang bị thêm một cấu trúc tôpô phù hợp và các toán tử tuyến tính liên tục
thumb|Bản đồ địa hình với [[đường đồng mức]] thumb|upright|[[Hình ảnh vệ tinh biểu thị độ cao của trung tâm đô thị của vùng đô thị New York, với đảo Manhattan ở trung tâm.]] **Địa hình
Trong toán học, một **hàm giải tích** là một hàm số được thể hiện bằng một biểu thức chuỗi lũy thừa hội tụ. Có cả **hàm giải tích thực** và **hàm giải tích phức**, giống
nhỏ|Minh họa kết quả phép nhân vectơ trong [[hệ tọa độ bên phải]] Trong toán học, phép **tích vectơ** hay **nhân vectơ** hay **tích có hướng** là một phép toán nhị nguyên trên các vectơ
**Hình học Riemann** là một nhánh của hình học vi phân nghiên cứu các đa tạp Riemann, đa tạp trơn với _metric Riemann_ hay với một tích trong (inner product) trên không gian tiếp tuyến
nhỏ| [[Bertrand Russell]] **Triết học** **phân tích** là một phong cách triết học chiếm ưu thế trong thế giới phương Tây vào đầu thế kỷ 20. Triết học phân tích là một trường phái triết
Trong toán học, cụ thể hơn là trong giải tích phức, **thặng** **dư** là một số phức tỷ lệ với tích phân đường của hàm phân hình dọc theo một đường cong kín bao quanh
phải|Bản ghi Babylon YBC 7289 (khoảng 1800–1600 TCN) với cách tính căn bậc hai của 2 bằng bốn phép cộng phân số, liên quan đến hệ lục thập phân (cơ số 60). 1 + 24/60
phải|Không gian ba chiều [[Hệ tọa độ Descartes với trục _x_ hướng về người quan sát.]] **Không gian ba chiều** là một mô hình hình học có ba (3) thông số (tọa độ, không tính
**_Siêu hình học_** (tiếng Hy Lạp: μετὰ ικά; Latin: _Metaphysica_ , lit: "vươn ra ngoài vật lý") là một trong những tác phẩm chủ yếu của Aristotle và là tác phẩm lớn đầu tiên của
Một **Hệ tọa độ Descartes** (tiếng Anh: **Cartesian coordinate system**) xác định vị trí của một điểm (_point_) trên một mặt phẳng (_plane_) cho trước bằng một cặp số tọa độ (_x_, _y_). Trong đó,
**Hình học tính** hay **Hình học tính toán** là một phần của toán học rời rạc xem xét các thuật toán giải các bài toán hình học. Trong hình học tính, những bài toán như
nhỏ|Đa diện lồi trong không gian 3 chiều. Giải tích lồi không chỉ bao gồm nghiên cứu các tập con lồi trong không gian Euclid mà còn có các hàm lồi trong không gian trừu
thế=|nhỏ| Một đa giác và hai vec-tơ pháp tuyến của nó phải|nhỏ| Một véc-tơ pháp tuyến của bề mặt tại một điểm chính là một véc-tơ pháp tuyến với mặt phẳng tiếp tuyến tại điểm
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Những người tử vì đạo trong thế kỷ 20 (Tu viện Westminster), từ trái sang phải: [[Mẹ Elizabeth của Nga; Mục sư Martin Luther King, Tổng giám mục Oscar Romero; Mục sư Dietrich Bonhoeffer]] **Thần
Khoa học máy tính nghiên cứu các cơ sở lý thuyết của thông tin và tính toán, cùng với các kỹ thuật thực tiễn để thực hiện và
Trong toán học, **công thức tích phân Cauchy** phát biểu tích phân của hàm chỉnh hình trên tập mở có thể được tính bằng giá trị của hàm này tại các điểm trên miền tập
**Trừu tượng hóa** trong toán học là quá trình rút ra bản chất cơ bản của một khái niệm toán học, loại bỏ bất kỳ sự phụ thuộc nào vào các đối tượng trong thế
alt=|right|thumb|Một hàm (màu đen) là hàm lồi khi và chỉ khi vùng nằm phía trên đồ thị của nó (màu lục) là [[tập lồi. Vùng này chính là trên đồ thị của hàm.]] Trong toán
thumb|Scalar là các [[số thực dùng trong đại số tuyến tính, đối ngược với vectơ (toán học và vật lý). Hình này thể hiện một vectơ. Tọa độ _x_ and _y_ là các scalar vì
Tích phân xác định được định nghĩa như diện tích _S_ được giới hạn bởi đường cong _y_=_f_(_x_) và trục hoành, với _x_ chạy từ _a_ đến _b_ **Tích phân** (Tiếng Anh: _integral_) là một
|nhỏ|300x300px|Trong [[không gian Euclide ba chiều, ba mặt phẳng này biểu diễn các nghiệm của phương trình tuyến tính, và giao tuyến của chúng biểu thị tập các nghiệm chung: trong trường hợp này là
**Christian Felix Klein** (25 tháng 4 năm 1849 – 22 tháng 6 năm 1925) là nhà toán học người Đức, được biết đến với những nghiên cứu của ông trong lý thuyết nhóm, lý thuyết
right|thumb|Một lưới hình chữ nhật (trên) và ảnh của nó qua một [[ánh xạ bảo giác (dưới).]] Trong toán học, một **hàm chỉnh hình** (**ánh xạ bảo giác**) là một hàm nhận giá trị phức
Trong vi tích phân nói riêng, và trong giải tích toán học nói chung, **tích phân từng phần** là quá trình tìm tích phân của tích các hàm dựa trên tích phân các đạo hàm
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
Combo Phương Pháp Giải Toán Chuyên Đề Giải Tích 12 Hình Học 12 Bộ 2 Cuốn 1.Phương Pháp Giải Toán Chuyên Đề Giải Tích 12 Cuốn sách được chia làm 4 chương Chương 1 Ứng
Combo Phương Pháp Giải Toán Chuyên Đề Giải Tích 12 Hình Học 12 Bộ 2 Cuốn 1.Phương Pháp Giải Toán Chuyên Đề Giải Tích 12 Cuốn sách được chia làm 4 chương Chương 1 Ứng
[[Joseph-Louis Lagrange (1736—1813)]] **Cơ học Lagrange** là một phương pháp phát biểu lại cơ học cổ điển, do nhà toán học và thiên văn học người Pháp-Ý Joseph-Louis Lagrange giới thiệu vào năm 1788. Trong
Trong toán học, **chuỗi** có thể được nói là, việc cộng lại vô hạn các số lại với nhau bất đầu từ số ban đầu. Chuỗi là phần quan trọng của vi tích phân và