Số nguyên tố giai thừa (factorial prime) là một số nguyên tố nhỏ hơn hoặc lớn hơn một so với giai thừa nào đó. Một vài số nguyên tố giai thừa là:
:2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199,...
Ở đây, ta có 2=2!; 3=2!+1; 5= 3!-1; 7 = 3!+1; 23=4!-1; 719=6!-1;5039=7!-1; 39916801 = 11!+1; 479001599= 12!+1; 87178291199 = 14!+1,...
Số nguyên tố giai thừa duy nhất đúng là giai thừa chỉ là số 2=2!.
Các số nguyên tố giai thừa được quan tâm trong lý thuyết số vì chúng vắng mặt trong dãy liên tiếp các hợp số. Chẳng hạn số nguyên tố tiếp theo 6227020777 = 13! − 23 là 6227020867 = 13! + 67 (giữa 2 số này có 89 hợp số liên tiếp). Tuy nhiên cũng có khi giữa 2 số nguyên tố liên tiếp nhỏ hơn 2 số nói ở trên nhưng lại có nhiều hợp số hơn. Ví dụ, có 95 hợp số liên tiếp giữa 360653 và 360749.
Các số nguyên tố giai thừa có vai trò trong luận cứ rằng 1 không là số nguyên tố.
Nếu n là một số tự nhiên và p là một số nguyên tố, n! + p không thể là nguyên tố với p < n, vì nó sẽ là một bội của p, cũng như chính n!. Nhưng n! + 1, chỉ chắc chắn là bội của 1, vẫn có thể là số nguyên tố. (Điều đó cũng đúng với n! - p và n! - 1).
Số nguyên tố giai thừa lớn nhất hiện nay là 422429! + 1, có 2.193.027 chữ số, được phát hiện vào ngày 21 tháng 2 năm 2022.
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Số nguyên tố giai thừa** (factorial prime) là một số nguyên tố nhỏ hơn hoặc lớn hơn một so với giai thừa nào đó. Một vài số nguyên tố giai thừa là: :2, 3, 5,
Bảng này gồm danh sách 1000 số nguyên tố đầu tiên và một số danh sách các số nguyên tố đặc biệt. 1 ## Một nghìn số nguyên tố đầu tiên Đây là danh sách
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
Trong lý thuyết số, số nguyên tố được gọi là **số nguyên tố Sophie Germain** nếu cũng là số nguyên tố. Số của số nguyên tố
**Số nguyên tố an toàn** là một số nguyên tố có dạng với _p_ cũng là số nguyên tố. (Theo quy ước, số nguyên tố _p_ được gọi là số nguyên
**Số nguyên tố Mersenne** là một số nguyên tố có giá trị bằng 2n − 1. Ví dụ 31 là số nguyên tố Mersenne vì 31 = 25 − 1 (31 và 5 đều là
Trong toán học, một **cặp số nguyên tố sexy** là một cặp hai số nguyên tố có hiệu bằng sáu; so với các cặp số nguyên tố sinh đôi, là các cặp số nguyên tố
thumb| [[Phân phối tần suất khoảng cách số nguyên tố cho các số nguyên tố lên tới 1.6 tỷ. Các cực đại đều là bội của 6.]] **Khoảng cách số nguyên tố** là khoảng cách
thumb|220x124px | right | Đồ thị hàm gamma và các cách diễn tả mở rộng khác của giai thừa Trong toán học, **giai thừa** là một toán tử một ngôi trên
Với _n_ ≥ 2, **giai thừa nguyên tố** (tiếng Anh: _primorial_) (ký hiệu _n_#) là tích của tất cả các số nguyên tố nhỏ hơn hoặc bằng _n_. Chẳng hạn, 7# = 210 là tích
**23** (**hai mươi ba**) là một số tự nhiên ngay sau 22 và ngay trước 24. ## Trong toán học * Số 23 là số nguyên tố thứ 9, và là số nguyên tố lẻ
thumb|[[Bảng tuần hoàn]] **Nguyên tố hóa học**, thường được gọi đơn giản là **nguyên tố**, là một chất hóa học tinh khiết, bao gồm một kiểu nguyên tử, được phân biệt bởi số hiệu nguyên
phải|nhỏ|300x300px| Một lời giải thích về các số viết ở trên và ở dưới được thấy trong ký hiệu số nguyên tử. Số nguyên tử là số proton, và do đó cũng là tổng điện
Trong lý thuyết số, **phân tích số nguyên** là việc phân tách một hợp số thành một tích của các số nguyên nhỏ hơn. Nếu các số nguyên đó giới hạn lại chỉ là số
**7** (**bảy** hay **bẩy**) là một số tự nhiên ngay sau 6 và ngay trước 8. ** Số bảy là số nguyên tố. ** Số bảy là số may mắn của người Nhật Bản. **
Trong toán học, **định lý Wolstenholme** phát biểu rằng với bất kỳ số nguyên tố , biểu thức đồng dư : được thỏa mãn, trong đó dấu ngoặc
**5000** (**năm nghìn**, hay **năm ngàn**) là một số tự nhiên ngay sau 4999 và ngay trước 5001. ## Một số số nguyên trong khoảng 5001 đến 5999 * **5003** - Số nguyên tố Sophie
nhỏ|254x254px|Đồ thị của hàm số . là số duy nhất lớn hơn 1 sao cho diện tích phần được tô màu bằng 1. Số **** là một hằng số toán học có giá trị gần
Trong toán học và khoa học máy tính, hàm **floor** (**phần nguyên nhỏ hơn**) và **ceiling** (**phần nguyên lớn hơn**) là các quy tắc cho tương ứng một số thực vào một số nguyên gần
**69** (**sáu mươi chín**; ****) là số tự nhiên liền sau số 68 và liền trước số 70. Đây là số lẻ, là hợp số chia hết cho 1, 3, 23 và 69. Ngoài ra,
thumb|Mô phỏng bằng các [[thanh Cuisenaire về bản chất lũy thừa hoàn hảo của 4, 8, và 9]] Trong toán học, **lũy thừa hoàn hảo** là số tự nhiên bằng tích của các phần tử
phải|nhỏ|Các số tự nhiên dùng để đếm (một quả táo, hai quả táo, ba quả táo....). Trong toán học, các **số tự nhiên** được sử dụng để đếm (như trong "có _sáu_ đồng xu trên
Trong lý thuyết số, **số Carmichael** là một hợp số thỏa mãn quan hệ đồng dư số học mô-đun : : cho tất cả các số nguyên nguyên tố cùng nhau
thumb|Tập hợp các cách nối điểm không cắt nhau (trên) và cắt nhau (dưới - 10 cách) trong tổng cộng 52 cách. Trong toán tổ hợp, **số Catalan** là dãy các số tự nhiên xuất
thumb|Thuật toán Euclid để tìm ước chung lớn nhất (ƯCLN) của hai đoạn thẳng BA và DC, độ dài của cả hai đều là bội của một "đơn vị" độ dài chung. Vì độ dài
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
thumb|alt=Cân thăng bằng trống|Hai đĩa cân thăng bằng này chứa không đồ vật, chia ra làm hai nhóm bằng nhau. Không là số chẵn. Nói theo cách khác, _tính chẵn lẻ_ của nó—đặc tính của
nhỏ|240x240px| Hằng số toán học [[Pi| là một số vô tỉ được thể hiện nhiều trong văn hóa đại chúng. ]] phải|nhỏ|240x240px| Số [[Căn bậc hai của 2| là số vô tỉ ]] Trong toán
**Lũy thừa** (từ Hán-Việt: nghĩa là "_nhân chồng chất lên_") là một phép toán toán học, được viết dưới dạng , bao gồm hai số, cơ số và _số mũ_ hoặc _lũy thừa_ , và
Trong toán học, **ước số chung lớn nhất** (**ƯCLN**) hay **ước chung lớn nhất** (**ƯCLN**) của hai hay nhiều số nguyên là số nguyên dương lớn nhất là ước số chung của các số đó.
nhỏ|Các bảng số học dành cho trẻ em, Lausanne, 1835 **Số học** là phân nhánh toán học lâu đời nhất và sơ cấp nhất, được hầu hết mọi người thường xuyên sử dụng từ những
Trong toán học và khoa học máy tính, **lý thuyết số tính toán**, còn được gọi là **lý thuyết số thuật toán**, là nghiên cứu về các thuật toán để thực hiện tính toán lý
nhỏ|[[Biểu đồ Venn cho thấy hợp của _A_ và _B_]] Trong tổ hợp, một nhánh của toán học, **nguyên lý bao hàm-loại trừ** (hay **nguyên lý bao hàm và loại trừ** hoặc **nguyên lý bù
**Định lý Euclid** là một tuyên bố cơ bản trong lý thuyết số khẳng định rằng có vô số số nguyên tố. Nó đã được Euclid chứng minh đầu tiên trong tác phẩm _Cơ sở_
nhỏ| [[Tập hợp con (toán học)|Các tập con của số phức. ]] **Số** là một đối tượng toán học được sử dụng để đếm, đo lường và đặt danh nghĩa. Các ví dụ ban đầu
**Định đề Bertrand** là một định lý phát biểu rằng với bất kỳ số nguyên , luôn tồn tại ít nhất một số nguyên tố sao cho :
nhỏ|[[Edmund Landau, nhà toán học Đức]] Tại hội nghị toán học quốc tế năm 1912, Edmund Landau đã liệt kê ra bốn bài toán về số nguyên tố. Các bài toán được nói theo lời
Trong toán học và lĩnh vực lý thuyết số, **hằng số Landau–Ramanujan** là con số xuất hiện trong định lý phát biểu rằng với số _x_ lớn, số số nguyên dương nhỏ hơn _x_ và
Trong lý thuyết số, **định lý Wilson** phát biểu rằng: cho _p_ là số tự nhiên lớn hơn 1, khi đó p là số nguyên tố, khi và chỉ khi (_p_-1)!+1 chia hết cho _p_.
thumb|John Friedlander thumb|Henryk Iwaniec Trong lý thuyết số giải tích, **định lý Friedlander–Iwaniec** phát biểu rằng có vô số số nguyên tố dưới dạng . Các số nguyên tố đầu tiên là :2,
nhỏ|285x285px|Các số hữu tỉ (ℚ) được bao gồm trong các [[số thực (ℝ), trong khi bản thân chúng bao gồm các số nguyên (ℤ), đến lượt nó bao gồm các số tự nhiên (ℕ)]] Trong
Trong lý thuyết số, **định lý Green–Tao**, chứng minh bởi Ben Green và Terence Tao năm 2004, phát biểu rằng dãy các số nguyên tố có chứa cấp số cộng độ dài bất kì. Nói
**Phân số tối giản** là phân số mà có tử số và mẫu số không thể cùng chia hết cho số nào ngoại trừ số 1 (hoặc -1 nếu lấy các số âm). Nói cách
Trong toán học một **số gần hoàn thiện dư** _n_ là số mà tổng các ước số của nó bằng 2_n + 1_. Cho đến nay vẫn chưa có số gần hoàn thiện dư nào
phải|Lãnh thổ Việt Nam thời nhà Lê sơ ([[1428-1527).]] **Nhà Lê sơ** (chữ Nôm: 茹黎初 chữ Hán: 黎初朝, Hán Việt: _Lê sơ triều_) là giai đoạn đầu của triều đại quân chủ nhà Hậu Lê.
**Lê Thái Tổ** (chữ Hán: 黎太祖 10 tháng 9 năm 1385 – 5 tháng 10 năm 1433), tên thật là **Lê Lợi** (黎利) là một nhà chính trị, nhà lãnh đạo quân sự, người đã
**Minh Thái Tổ** (chữ Hán: 明太祖, 21 tháng 10 năm 1328 – 24 tháng 6 năm 1398), tên thật là **Chu Trùng Bát** (朱重八 ), còn gọi là **Hồng Vũ Đế** (洪武帝), **Hồng Vũ quân**
thumb|Mỹ Lương Công chúa, húy là [[Nguyễn Phúc Tốn Tùy|Tốn Tùy - chị gái Vua Thành Thái, và hai nữ hầu.]] **Hậu cung nhà Nguyễn** là quy định và trật tự của hậu cung dưới
**Mặt trận Dân tộc Giải phóng miền Nam Việt Nam** (phía Hoa Kỳ, Việt Nam Cộng hòa và các đồng minh thường gọi là **Việt Cộng**) là một tổ chức liên minh chính trị hoạt