✨Hàm vectơ

Hàm vectơ

Một hàm được định giá trị vectơ, cũng được gọi là hàm vectơ, là một hàm toán học của một hoặc nhiều biến với miền giá trị của nó là một bộ của những vectơ đa chiều hoặc những vectơ chiều vô hạn. Đầu vào của một hàm được định giá vectơ có thể là một vô hướng hoặc một vectơ. Chiều của miền xác định không bị quy định bởi số chiều của miền giá trị.

Ví dụ

phải|nhỏ|300x300px|A graph of the vector-valued function r(t) = <> indicating a range of solutions and the vector when evaluated near Một ví dụ phổ biến của một hàm được định giá vectơ là hàm mà phụ thuộc vào một tham số thực t, thường biểu diễn thời gian, sinh ra một vectơ v(t) như một kết quả. Dưới dạng vectơ đơn vị chuẩn i, j, k của hệ trục tọa độ không gian 3 chiều Đề các, những loại cụ thể của hàm được định giá vectơ được cho bởi sự biểu diễn như: 

  • \mathbf{r}(t)=f(t)\mathbf{i}+g(t)\mathbf{j} hoặc
  • \mathbf{r}(t)=f(t)\mathbf{i}+g(t)\mathbf{j}+h(t)\mathbf{k} với f(t), g(t) và h(t) là những hàm tọa độ của tham số t. Vecto **r**(t) có đuôi nằm tại gốc tọa độ và đầu tại điểm có tọa độ được tính bởi hàm.

Vecto được chỉ ra trên đồ thị bên phải là định giá của hàm gần t = 19,5 (giữa 6π và 6,5π, nghĩa là, nhiều hơn 3 vòng một chút). Đường xoắn ốc là đường được vẽ bởi đầu của vectơ với t tăng từ 0 tới 8π.

Hàm vectơ cũng có thể được ám chỉ trong cách biểu thị khác:

  • \mathbf{r}(t)=\langle f(t), g(t)\rangle hoặc
  • \mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle

Tính chất

Miền xác định của một hàm được định giá vectơ là giao của miền của những hàm _f, g _và h.

Đạo hàm của một hàm vectơ 3 chiều

Nhiều hàm được định giá vectơ, giống như hàm được định giá vô hướng, có thể được lấy vi phân bằng cách đơn giản là lấy vi phân những thành phần của hệ trục tọa độ Đề các. Vì vậy, nếu: : \mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k} là một hàm được định giá vectơ thì : \frac{d\mathbf{r}(t)}{dt} = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}. Đạo hàm vectơ thừa nhận sự hiểu biết vật lý sau đây: nếu r(t) biểu thị vị trí của một hạt, thì đạo hàm là vận tốc của hạt: : \mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt}. Cũng như vậy, đạo hàm của vận tốc là gia tốc : \frac{d\mathbf{v}(t)}{d t}=\mathbf{a}(t).

Đạo hàm riêng phần

Các đạo hàm riêng phần của một vectơ a đối với một biến vô hướng q được định nghĩa là : \frac{\partial\mathbf{a{\partial q} = \sum_{i=1}^{n}\frac{\partial a_i}{\partial q}\mathbf{e}i với a_i thành phần vô hướng của a trong các hướng của ei. Nó cũng được gọi là các cosine chỉ hướng của a và ei hay của tích vô hướng. Các vectơ e1,e,2,e3 tạo thành  một cơ sở trực giao cố định trong hệ quy chiếu trong đó đạo hàm được lấy.

Đạo hàm thường

Nếu a được coi như là một hàm vectơ của một biến vô hướng, như thời gian t, thì phương trình trên giảm thành đạo hàm thời gian thường bậc 1 của a đối với t, : \frac{d\mathbf{a{dt} = \sum_{i=1}^{3}\frac{da_i}{dt}\mathbf{e}_i.

Đạo hàm toàn phần

Nếu vectơ a là, một hàm của một số n của những biến vô hướng q,r (r = 1,...,n), và mỗi qr chỉ là một hàm của thời gian t, thì đạo hàm thường của a đối với t có thể được thể hiện trong một dạng được gọi là đạo hàm toàn phần, như : \frac{d\mathbf a}{dt} = \sum_{r=1}^{n}\frac{\partial \mathbf a}{\partial q_r} \frac{dq_r}{dt} + \frac{\partial \mathbf a}{\partial t}. Một số các tác giả thích sử dụng chữ in hoa D để cho biết toán tử đạo hàm toàn phần, như trong D/Dt. Đạo hàm toàn phần khác với đạo hàm riêng phần thời gian trong đó đạo hàm toàn phần chịu trách nhiệm cho những thay đổi của a do thời gian sai của biến qr.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Một hàm được định giá trị vectơ, cũng được gọi là **hàm vectơ**, là một hàm toán học của một hoặc nhiều biến với miền giá trị của nó là một bộ của những vectơ
nhỏ|[[Đồ thị của hàm số (màu đen) và tiếp tuyến của nó (màu đỏ). Hệ số góc của tiếp tuyến bằng đạo hàm của hàm đó tại tiếp điểm (điểm được đánh dấu).]] Trong toán
Trong lý thuyết xác suất và thống kê, **hàm sinh mô men** (**moment-generating function** hay **MGF**) của một biến ngẫu nhiên là một mô tả thay thế cho hàm phân phối xác suất của nó.
Trong toán học, thuật ngữ " **phiếm hàm** " (danh từ, tiếng Anh là **functional**) có ít nhất 3 nghĩa sau : nhỏ|451x451px|Phiêm hàm [[Chiều dài cung - Arc length|chiều dài cung đi từ miền
nhỏ|200x200px|Hình chiếu của **a** lên **b** (**a**1), và hình phản chiếu (**a**2). nhỏ|248x248px|Khi 90° < _θ_ ≤ 180°, **a**1 có chiều ngược lại so với **b**. **Hình chiếu vectơ** của một vectơ **a** lên một
Trong đại số tuyến tính, một **vectơ cột** hay **ma trận cột** là một ma trận cỡ _m_ × 1, tức là ma trận chỉ gồm một cột đơn gồm _m_ phần tử, : \boldsymbol{x}
**Giải tích vectơ**, hay **tích phân vectơ**, liên quan đến vi phân và tích phân các trường vectơ, chủ yếu trong không gian Euclide 3 chiều \mathbb{R}^3. Thuật ngữ "tích phân véctơ" đôi khi được
nhỏ| Hàm [[sin và tất cả các đa thức Taylor của nó đều là các hàm lẻ. Hình ảnh này cho thấy \sin(x) và các xấp xỉ Taylor của nó, các đa thức bậc 1,
thumb|Đồ thị của hàm đồng nhất trên trường số thực Trong toán học, **hàm đồng nhất** (), còn gọi là **quan hệ đồng nhất**, **ánh xạ đồng nhất** hay **phép biến đổi đồng nhất**, là
[[Đồ thị hàm sin]] [[Đồ thị hàm cos]] [[Đồ thị hàm tan]] [[Đồ thị hàm cot]] [[Đồ thị hàm sec]] [[Đồ thị hàm csc]] Trong toán học nói chung và lượng giác học nói riêng,
right|thumb|Một lưới hình chữ nhật (trên) và ảnh của nó qua một [[ánh xạ bảo giác (dưới).]] Trong toán học, một **hàm chỉnh hình** (**ánh xạ bảo giác**) là một hàm nhận giá trị phức
Trong giải tích toán học (đặc biệt là giải tích lồi) và tối ưu hóa, **hàm lồi chính thường** (proper convex function) là một hàm f lấy giá trị trong trục số thực mở rộng
Trong giải tích điều hòa, **hàm _Ξ_ Harish-Chandra** là một hàm cầu đặc biệt trong nhóm Lie đơn giản một phần, được nghiên cứu bởi . Harish-Chandra đã sử dụng hàm này để định nghĩa
phải|nhỏ|250x250px|Ma trận biến đổi _A_ tác động bằng việc kéo dài vectơ _x_ mà không làm đổi phương của nó, vì thế _x_ là một vectơ riêng của _A_. Trong đại số tuyến tính, một
**Vectơ-4** là một véctơ trên một không gian 4 chiều thực đặc biệt, gọi là không gian Minkowski. Chúng xuất hiện lần đầu trong lý thuyết tương đối hẹp, như là sự mở rộng của
**Máy vectơ hỗ trợ** (**SVM** - viết tắt tên tiếng Anh **support vector machine**) là một khái niệm trong thống kê và khoa học máy tính cho một tập hợp các phương pháp học có
phải|nhỏ|250x250px| [[Mặt Mobius|Dải Mobius (mở rộng vô hạn) là một phân thớ đường trên đường tròn **S**1. Trong một lân cận địa phương tại mọi điểm của **S**1, nó đồng phôi với _U_×**R** (trong đó
phải|nhỏ|Không gian vectơ là một tập các đối tượng có định hướng (được gọi là các vectơ) có thể co giãn và cộng. Trong toán học, **không gian vectơ** (hay còn gọi là không gian
phải|nhỏ|280x280px|Hàm đặc trưng của một biến ngẫu nhiên với phân phối đều _U_(–1,1). Hàm này là giá trị thực bởi vì nó tương ứng với một biến ngẫu nhiên đối xứng qua gốc; tuy nhiên
Trong toán học, **đạo hàm riêng** của một hàm số đa biến là đạo hàm theo một biến, các biến khác được xem như là hằng số(khác với đạo hàm toàn phần, khi tất cả
Trong toán học, một phép **biến đổi tuyến tính** (còn được gọi là **toán tử tuyến tính** hoặc là **ánh xạ tuyến tính**) là một ánh xạ V \rightarrow W giữa hai mô đun (cụ
**Chuyển động học** là một nhánh của cơ học cổ điển, có mục đích mô tả chuyển động của các điểm, vật thể và hệ vật trong khi bỏ qua nguyên nhân dẫn đến các
Trong toán học, **không gian Hilbert** (Hilbert Space) là một dạng tổng quát hóa của không gian Euclid mà không bị giới hạn về vấn đề hữu hạn chiều. Đó là một không gian có
**Hệ quy chiếu quay** là một hệ quy chiếu phi quán tính quay so với một hệ quy chiếu quán tính. Ví dụ về hệ quy chiếu quay có thể thấy được hằng ngày là
Trong toán học, một phép toán hai ngôi có tính **giao hoán** khi thay đổi thứ tự của hai toán hạng không làm thay đổi giá trị kết quả. Nó là tính chất cơ bản
Trong đại số tuyến tính, **thương** của một không gian vectơ _V_ với một không gian vectơ con _N_ là một không gian vectơ thu được khi "thu gọn" _N_ về không. Không gian thu
nhỏ|346x346px| Hạt nhân và ảnh của ánh xạ Trong toán học, **hạt nhân** (_kernel_) của một ánh xạ tuyến tính, còn gọi là **hạch** hay **không gian vô hiệu** (_null space_), là không gian vectơ
Trong giải tích vectơ, **toán tử div** hay **toán tử phân kỳ** hay **suất tiêu tán** là một toán tử đo mức độ phát (ra) hay thu (vào) của trường vectơ tại một điểm cho
Trong toán học, **không gian Banach**, đặt theo tên Stefan Banach người nghiên cứu các không gian đó, là một trong những đối tượng trung tâm của nghiên cứu về giải tích hàm. Nhiều không
phải|khung|Hai bước đầu tiên của quá trình Gram–Schmidt Trong toán học, đặc biệt là trong lĩnh vực đại số tuyến tính và giải tích số, **quá trình Gram–Schmidt** là một phương pháp trực chuẩn hóa
Trong đại số tuyến tính, hai vectơ trong một không gian tích trong là **trực chuẩn** nếu chúng trực giao (hay vuông góc) và đều là vectơ đơn vị. Một tập hợp vectơ tạo thành
Trong giải tích vectơ, **gradient** của một trường vô hướng là một trường vectơ có chiều hướng về phía mức độ tăng lớn nhất của trường vô hướng, và có độ lớn là mức độ
Trong toán học, **tích phân đường** là một phép tính tích phân khi hàm số được tích phân theo một đường. ## Giải tích vectơ Tích phân đường của trường vô hướng. Một tích phân
Giáo trình Hình học vi phần này là một giáo trình về hình học vi phân cổ điển lí thuyết về đường và mặt trong không gian Euclid hai, ba chiều, đồng thời là một
Trong giải tích, vật lý học hay kỹ thuật, **trường thế vô hướng**, thường được gọi tắt là **thế vô hướng**, **trường thế** hay **thế**, là một trường vô hướng mà trái dấu của gradient
phải|khung|Phép biến đổi _P_ là phép chiếu vuông góc lên đường thẳng _m_. Trong đại số tuyến tính và giải tích hàm, **phép chiếu** là một biến đổi tuyến tính P từ một không gian
**Định lý Gauss**, hay còn gọi là **định lý phân kỳ**, hay **định lý Ostrogradsky**, hay **định lý Gauss-Ostrogradsky** (do hai nhà toán học người Đức Carl Friedrich Gauß và người Nga Mikhail Vasilyevich Ostrogradsky
nhỏ|Tam giác _ABC_ và ảnh phản xạ của nó _A_B_C_'' qua phép phản xạ qua trục đối xứng c1c2. Trong toán học, **phép phản xạ** là một ánh xạ đẳng cự từ một không gian
Tổng Hợp những bài tập trắc nghiệm có đáp án dành cho các em học sinh lớp 10 Cuốn sách được chia thành 2 phần Đại số và Hình học theo từng chuyên đề và

Trong vật lý hạt, **phương trình Dirac** là một phương trình sóng tương đối tính do nhà vật lý người Anh Paul Dirac nêu ra vào năm 1928 và sau này được coi
Trong toán học và vật lý, **toán tử Laplace** hay **Laplacian**, ký hiệu là \Delta\,  hoặc \nabla^2  được đặt tên theo Pierre-Simon de Laplace, là một toán tử vi phân, đặc biệt trong các toán
Máy tính fx-570MS với 401 chức năng Màn hình hiển thị 2 dòng dữ liệu để đọc biểu thức và kết quả Cho phép xem lại các bước trước đó để chỉnh sử và thực
-: ̂́ - ́ ̣ - ̀ ̣ ̛́ ̂̉ ̀ Serum Yall-O2 được khuyên dùng cho DA TRÊN 30T, MẤT NƯỚC, SẦN SÙI. Sử dụng như #finishingserum trong chu trình #skincare, giúp da hấp
-: ̂́ - ́ ̣ - ̀ ̣ ̛́ ̂̉ ̀ Serum Yall-O2 được khuyên dùng cho DA TRÊN 30T, MẤT NƯỚC, SẦN SÙI. Sử dụng như #finishingserum trong chu trình #skincare, giúp da hấp
Trắc Nghiệm Chuyên Đề Toán Lớp 10 Tổng Hợp những bài tập trắc nghiệm có đáp án dành cho các em học sinh lớp 10 Cuốn sách được chia thành 2 phần Đại số và
**Phép tính biến phân** là một ngành giải tích toán học sử dụng _variations (không tìm được thuật ngữ tiếng Việt tương đương, có thể là "số gia của hàm số", hoặc đơn giản là
Trong giải tích lồi, một nhánh của toán học, **miền hữu hiệu** là một khái niệm mở rộng định nghĩa tập xác định của một hàm toán học. Cho một không gian vectơ X, khi
Trong toán học, **công thức Faà di Bruno** là một đẳng thức tổng quát quy tắc dây chuyền cho đạo hàm cấp cao, đặt tên theo , mặc dù ông không phải người đầu tiên
Trong đại số, phép **đồng cấu** là một ánh xạ bảo toàn cấu trúc giữa hai cấu trúc đại số cùng loại (chẳng hạn như hai nhóm, hai vành, hoặc hai không gian vectơ). Từ
Trong toán học, ký hiệu **Kronecker delta** là một hàm số của hai biến, thường là các số nguyên không âm. Hàm số có giá trị 1 nếu hai biến bằng nhau, và 0 nếu