✨Trên đồ thị (toán học)

Trên đồ thị (toán học)

alt=|right|thumb|Một hàm (màu đen) là hàm lồi khi và chỉ khi vùng nằm phía trên đồ thị của nó (màu lục) là [[tập lồi. Vùng này chính là trên đồ thị của hàm.]] Trong toán học, trên đồ thị (tiếng Anh: epigraph hoặc supergraph) của một hàm f : RnR là tập hợp các điểm nằm trong hoặc ở phía trên đồ thị của nó:

: \mbox{epi} f = {(x, \mu) \, : \, x \in \mathbb{R}^n,\, \mu \in \mathbb{R},\, \mu \ge f(x)} \subseteq \mathbb{R}^{n+1}.

Định nghĩa trên cũng đúng khi hàm mang giá trị trong tập . Trong trường hợp này, trên đồ thị là rỗng khi và chỉ khi f đồng nhất bằng vô hạn.

Tập xác định (thay vì tập hợp đích) của hàm không đóng vai trò đặc biệt quan trọng trong cách định nghĩa này; đó có thể là một không gian tuyến tính bất kỳ thay cho \mathbb{R}^n.

Một cách tương tự, tập hợp các điểm nằm trong hoặc ở phía dưới đồ thị của hàm được gọi là dưới đồ thị của hàm đó.

Trên đồ thị thường được ứng dụng để diễn giải về mặt hình học các đặc tính của hàm lồi hoặc để chứng minh các đặc tính này.

Tính chất

Một hàm được gọi là lồi khi và chỉ khi trên đồ thị của nó là tập lồi. Trên đồ thị của một hàm afin thực g : RnR là một nửa không gian trên Rn+1.

Một hàm được gọi là nửa liên tục dưới khi và chỉ khi trên đồ thị của nó là đóng.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
alt=|right|thumb|Một hàm (màu đen) là hàm lồi khi và chỉ khi vùng nằm phía trên đồ thị của nó (màu lục) là [[tập lồi. Vùng này chính là trên đồ thị của hàm.]] Trong toán
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
} ## Bối cảnh thực tế Bài toán tìm đường đi ngắn nhất giữa hai đỉnh của đồ thị liên thông có nhiều ứng dụng thực tế như: * Bài toán chọn hành trình
:_Bài này chỉ viết về các định nghĩa cơ bản. Để hiểu rộng hơn, xin xem lý thuyết đồ thị. Về ý nghĩa biểu diễn hàm số trên hệ tọa độ, xem đồ thị hàm
phải|khung|Một cây có dán nhãn với 6 đỉnh và 5 cạnh **Cây** là khái niệm quan trọng trong lý thuyết đồ thị, cấu trúc dữ liệu và giải thuật. Cây là một đồ thị mà
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
Trong toán học, **đồ thị đối ngẫu** của một đồ thị mặt phẳng G là một đồ thị G' trong đó có một đỉnh tương ứng cho mỗi miền mặt phẳng của đồ thị G,
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
[[Hình:Hypergraph-wikipedia.svg|right|frame| Một ví dụ về siêu đồ thị, với X = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}E = \{e_1,e_2,e_3,e_4\} = \{\{v_1, v_2, v_3\}, \{v_2,v_3\}, \{v_3,v_5,v_6\}, \{v_4\}\}. ]] Trong toán học,một **siêu
right|thumb|Đồ thị Cayley của [[nhóm tự do trên hai phần tử sinh _a_ và _b_]] Trong toán học, **đồ thị Cayley**, hay còn gọi là **đồ thị tô màu Cayley**, **biểu đồ Cayley**, **biểu đồ
right|thumb|Một ví dụ về "vẻ đẹp trong toán học" - một chứng minh đơn giản và thanh lịch về [[Định lý Pythagore.]] **Vẻ đẹp của Toán học** mô tả quan niệm rằng một số nhà
Nói chung, **toán học thuần túy** là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng. Đây là một loại hoạt động toán học có thể nhận biết được từ thế kỷ 19
**N****gôn ngữ toán học** là hệ thống ngôn ngữ được sử dụng bởi các nhà toán học để truyền đạt ý tưởng toán học với nhau. Ngôn ngữ này bao gồm một nền tảng từ
nhỏ|phải|Logo của ban tổ chức cuộc thi IMO (International Mathematical Olympiad) **Olympic Toán học Quốc tế** (tiếng Anh: _International Mathematical Olympiad_, thường được viết tắt là **IMO**) là một kì thi Toán học cấp quốc
**Vùng đô thị Thành phố Hồ Chí Minh** là một trong hai vùng đô thị của Việt Nam, nằm trong quy hoạch được Bộ Xây dựng Việt Nam trình Thủ tướng Chính phủ ngày 23
Quy hoạch vùng ven đô có mật độ dân cư thấp ở [[Cincinnati, Hoa Kỳ.]] **Quy hoạch đô thị** là một khái niệm hay được dùng để chỉ các hoạt động kiểm soát hay tổ
thumb|right|Một trang từ _[[Cuốn sách Súc tích về Tính toán bởi Hoàn thiên và Cân bằng_ của Al-Khwarizmi]] Toán học trong thời đại hoàng kim của Hồi giáo, đặc biệt là trong thế kỷ 9
**Đô thị nhỏ gọn** hay còn có tên gọi khác là **đô thị nén** ([https://en.wikipedia.org/wiki/Compact_City Compact City]) là tên gọi do Dantzig và Saaty đưa ra từ năm 1973 và được thông dụng tại châu
**Toán học của thuyết tương đối rộng** là mô hình chứa đựng cấu trúc và kỹ thuật toán học được sử dụng để nghiên cứu và thiết lập lên thuyết tương đối rộng của Einstein.
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và
Trong lý thuyết đồ thị, một **đồ thị phẳng** là một đồ thị có thể được nhúng vào mặt phẳng, tức là có thể được vẽ trên mặt phẳng sao cho các cạnh chỉ gặp
nhỏ|350x350px| Một trang trại đô thị ở [[Chicago ]] **Nông nghiệp** **đô thị** **, trồng trọt** **đô thị**, hoặc **làm vườn đô thị** là hoạt động trồng trọt, chế biến và phân phối thực phẩm
**Toán học tổ hợp** (hay **giải tích tổ hợp**, **đại số tổ hợp**, **lý thuyết tổ hợp**) là một ngành toán học rời rạc, nghiên cứu về các cấu hình kết hợp các phần tử
Trong toán học, thuật ngữ **tối ưu hóa** chỉ tới việc nghiên cứu các bài toán có dạng :_Cho trước:_ một hàm _f_: _A_ \to **R** từ tập hợp _A_ tới tập số thực :_Tìm:_
Một tập hợp hình đa giác trong một [[biểu đồ Euler]] Tập hợp các số thực (R), bao gồm các số hữu tỷ (Q), các số nguyên (Z), các số tự nhiên (N). Các số
Một **mô hình toán học** là một mô hình trừu tượng sử dụng ngôn ngữ toán để mô tả về một hệ thống. Mô hình toán được sử dụng nhiều trong các ngành khoa học
:_Mục từ này nói về quan hệ trong toán học. Để xem các nghĩa khác, xem Quan hệ._ Trong toán học, **_quan hệ_** là một khái niệm khái quát hóa các quan hệ thường gặp,
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
Trong toán học, **dãy** là một họ có thứ tự các đối tượng toán học và cho phép lặp lại các phần tử trong đó. Giống như tập hợp, nó chứa các phần tử (hay
**Hội thi Tin học trẻ toàn quốc** (từ năm 1995 - 2007 là **Hội thi Tin học trẻ không chuyên toàn quốc**) là kì thi tin học thường niên dành cho các học sinh tiểu
nhỏ|230x230px|Quang cảnh một góc khu đô thị Phú Mỹ Hưng tại Nam Sài Gòn nhỏ|230x230px|Khu đô thị Phú Mỹ Hưng - Đại lộ Nguyễn Văn Linh **Khu đô thị Phú Mỹ Hưng** là một khu
Trong toán học, một **chứng minh** là một cách trình bày thuyết phục (sử dụng những chuẩn mực đã được chấp nhận trong lĩnh vực đó) rằng một phát biểu toán học là đúng đắn.
Trong toán học, thuật ngữ **mầm** của một đối tượng trong/trên không gian tô pô là lớp tương đương của đối tượng đó và các đối tượng khác cùng loại và chúng đều có chung
Trong toán học, **chuỗi** có thể được nói là, việc cộng lại vô hạn các số lại với nhau bất đầu từ số ban đầu. Chuỗi là phần quan trọng của vi tích phân và
nhỏ|phải|Các thành phố có ít nhất 1 triệu dân vào năm 2006 Một **đô thị** hay **thành phố** là một khu vực có mật độ gia tăng các công trình kiến trúc do con người
**Vùng Thủ đô Manila** (tiếng Filipino: Kalakhang Maynila, Kamaynilaan) hay **Vùng Thủ đô Quốc gia** (tiếng Filipino: Pambansang Punong Rehiyon) hay **Metro Manila** là một vùng thủ đô bao gồm thành phố Manila và các
Toán học Việt Nam có khởi nguồn chậm phát triển từ thời phong kiến vốn chỉ phục vụ các mục đích đo đạc tính toán và bắt đầu hình thành nền móng hiện đại do
**Đường sắt đô thị Hà Nội** () là hệ thống đường sắt đô thị của thành phố Hà Nội. Hệ thống được vận hành bởi Công ty Đường sắt Hà Nội (Hanoi Metro Company –
**Phát biểu toán học của cơ học lượng tử** là các hình thức toán học cho phép mô tả chặt chẽ cơ học lượng tử. ## Các tiên đề #### Tiên đề 1 Nội dung
phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một **định lý** là một mệnh đề phi hiển nhiên đã được chứng minh là
**Khu đô thị mới Thủ Thiêm** là một dự án phát triển đô thị mới tại bán đảo Thủ Thiêm, thuộc thành phố Thủ Đức, đối diện Quận 1 qua sông Sài Gòn, Thành phố
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
**Tuyến 2A:** **Cát Linh – Hà Đông – Xuân Mai** là một tuyến metro thuộc hệ thống mạng lưới Đường sắt đô thị Hà Nội, được đầu tư xây dựng bởi Bộ Giao thông Vận
thumb|Hình mình họa cho chứng minh của Euclid về định lý Pythagoras. **Toán học Hy Lạp** là nền toán học được viết bằng tiếng Hy Lạp, phát triển từ thế kỷ 7 TCN đến thế
**Tuyến 3: Trôi – Nhổn – Ga Hà Nội – Hoàng Mai** là tuyến đường sắt đô thị đang được xây dựng và là một phần của hệ thống mạng lưới Đường sắt đô thị
**Tuyến 1** hay còn gọi là **Tuyến Bến Thành – Suối Tiên** là một tuyến metro thuộc hệ thống Đường sắt đô thị Thành phố Hồ Chí Minh, vận hành vào lúc 10:00 ngày 22
**Truyền thuyết đô thị Nhật Bản** là những câu chuyện được lưu truyền trong dân gian Nhật Bản và được cho là có thật, dù chưa có bằng chứng xác thực. Những truyền thuyết đô
Trong toán học, **khoảng** là một khái niệm liên quan đến dãy và tích thuộc về tập hợp của một hoặc nhiều số. ## Giới thiệu trên số thực Trên trường số thực, một **khoảng**