✨Đồ thị phẳng

Đồ thị phẳng

Trong lý thuyết đồ thị, một đồ thị phẳng là một đồ thị có thể được nhúng vào mặt phẳng, tức là có thể được vẽ trên mặt phẳng sao cho các cạnh chỉ gặp nhau ở các đỉnh.

Bài toán

Từ xa xưa đã lưu truyền một bài toán cổ "Ba nhà, ba giếng": Có ba nhà ở gần ba cái giếng,nhưng không có đường nối thẳng các nhà với nhau cũng như không có đường nối thẳng các giếng với nhau. Có lần bất hoà với nhau, họ tìm cách làm các đường khác đến giếng sao cho các đường này đôi một không giao nhau. Họ có thực hiện được ý định đó không? nhỏ|786x324|Bài toán ba nhà nhỏ|886x608|Mạch in điện tử Bài toán thực tế: Có 3 gia đình, 3 nhà cung cấp điện, nước, gas. Các gia đình đều cần điện, nước, gas và đều muốn đi dây riêng, do đó cần nối dây từ gia đình đến các nhà cung cấp sao cho không dây nào cắt dây nào.

Ngày nay cũng có những bài toán tương tự như bài toán đi dây trong mạch in.

Thiết lập bài toán

Bài toán này có thể được mô hình bằng đồ thị phân đôi đầy đủ K{3,3}. Câu hỏi ban đầu có thể diễn đạt như sau: Có thể vẽ K{3,3} trên một mặt phẳng sao cho không có hai cạnh nào cắt nhau (ở một điểm không phải là điểm mút của các cạnh)?

Tổng quát:

  • Có thể vẽ một đồ thị trên một mặt phẳng không? Có các cạnh nào cắt nhau không?
  • Khi nào có thể tìm được ít nhất một cách biểu diễn đồ thị không có cạnh cắt nhau?

Đồ thị phẳng

Một đồ thị được gọi là một đồ thị phẳng nếu ta có thể vẽ nó trên mặt phẳng sao cho các cạnh của nó không cắt nhau ngoài ở đỉnh. Cách vẽ như vậy sẽ được gọi là biểu diễn phẳng của đồ thị. Ví dụ K_4 là một đồ thị phẳng.

Điều kiện cần và đủ để đồ thị là phẳng được chỉ ra trong định lý Kuratowski:

:Đồ thị là phẳng khi và chỉ khi nó không chứa đồ thị con đồng phôi với K{3,3} hoặc K5.

Trong thực tế việc sử dụng định lý Kuratowski để kiểm tra đồ thị có phải là đồ thị phẳng hay không thì rất khó khăn. Tuy nhiên, tồn tại thuật toán để kiểm tra vấn đề này. Xét đồ thị phẳng với n đỉnh và p cạnh, ta có:

: Định lý 1. Nếu n ≥ 3 thì p ≤ 3n - 6.

: Định lý 2. Nếu n ≥ 3 và không có chu trình có độ dài 3, thì p ≤ 2n - 4.

Công thức Euler cho đồ thị phẳng

Euler đã chứng minh được rằng các biểu diễn phẳng khác nhau của một đồ thị đều chia mặt phẳng ra thành cùng một số miền qua định lý sau (thường được gọi là công thức Euler):

: Giả sử một đồ thị phẳng liên thông có n đỉnh, m cạnh, r miền. Khi đó r=m-n+2.

Chứng minh: Cho G là đồ thị phẳng liên thông có n đỉnh, m cạnh và r miền. Ta bỏ một số cạnh của G để được một cây khung của G. Mỗi lần ta bỏ một cạnh (m giảm 1) thì số miền của G cũng giảm 1 (r giảm 1), còn số đỉnh của G không thay đổi (n không đổi). Như vậy, giá trị của biểu thức n - m + r không thay đổi trong suốt quá trình ta bỏ bớt cạnh của G để được một cây. Cây này có n đỉnh, do đó có n - 1 cạnh và cây chỉ có một miền, vì vậy: n - m + r = n - (n -1) + 1 = 2.

Hệ thức n - m + r = 2 thường gọi là hệ thức Euler cho hình đa diện, vì được Euler chứng minh đầu tiên cho hình đa diện có n đỉnh, m cạnh và r mặt.

Một hệ quả đơn giản là:

: Trong một đồ thị phẳng liên thông luôn tồn tại ít nhất một đỉnh có bậc không vượt quá 5.

Chứng minh: Trong đồ thị phẳng mỗi miền được bao bằng ít nhất 3 cạnh. Mặt khác, mỗi cạnh có thể nằm trên biên của tối đa hai miền. Gọi d là số miền, thì 3d ≤ 2p. Nếu trong đồ thị phẳng mà tất cả các đỉnh đều có bậc không nhỏ hơn 6 thì do mỗi đỉnh của đồ thị phải là đầu mút của ít nhất 6 cạnh mà mỗi cạnh lại có hai đầu mút nên ta có 6n ≤ 2p hay 3n ≤ p. Từ đó suy ra 3d+3n ≤ 2p+p hay d+n ≤ p, trái với hệ thức Euler d+n = p+2.

Đồ thị không phẳng

:Định lý: Đồ thị K{3,3} không phải là đồ thị phẳng._

Chứng minh: Giả sử K_{3,3} là đồ thị phẳng. Khi đó ta có một đồ thị phẳng với 6 đỉnh (n=6) và 9 cạnh (p=9), nên theo hệ thức Euler đồ thị có số miền là d = p-n+2 = 5. Ở đây, mỗi cạnh chung cho hai miền. Bằng kiểm tra trực tiếp ta thấy không thể có miền tạo ra từ 3 cạnh, do đó mỗi miền có ít nhất 4 cạnh. Do đó 4d ≤ 2p, tức là 4x5 ≤ 2x9, vô lý.

Như vậy định lý này cho ta lời giải của bài toán "Ba nhà ba giếng", nghĩa là không thể thực hiện được việc làm các đường khác đến giếng sao cho các đường này đôi một không giao nhau.

: Định lý: _Đồ thị K5 không phải là đồ thị phẳng.

Chứng minh: Giả sử K_5 là đồ thị phẳng. Khi đó ta có một đồ thị phẳng với 5 đỉnh (n=5) và 10 cạnh (p=10), nên theo hệ thứcEuler đồ thị có số miền là d=p-n+2=7. Trong K_5, mỗi miền có ít nhất 3 cạnh, mỗi cạnh chung cho 2 miền, vì vậy 3d ≤ 2n, tức là 3x7 ≤ 2x10, vô lý.

Tô màu đồ thị

Tô màu bản đồ

Mỗi bản đồ có thể coi là một đồ thị phẳng. Trong một bản đồ, ta coi hai miền có chung nhau một đường biên là hai miền kề nhau (hai miền chỉ có chung nhau một điểm biên không được coi là kề nhau). Một bản đồ thường được tô màu, sao cho hai miền kề nhau được tô hai màu khác nhau. Ta gọi một cách tô màu bản đồ như vậy là một cách tô màu đúng.

Để đảm bảo chắc chắn hai miền kề nhau không bao giờ có màu trùng nhau, chúng ta tô mỗi miền bằng một màu khác nhau. Tuy nhiên việc làm đó nói chung là không hợp lý. Nếu bản đồ có nhiều miền thì sẽ rất khó phân biệt những màu gần giống nhau. Do vậy người ta chỉ dùng một số màu cần thiết để tô bản đồ. Một bài toán được đặt ra là: xác định số màu tối thiểu cần có để tô màu đúng một bản đồ.

Tô màu đồ thị

Mỗi bản đồ trên mặt phẳng có thể biểu diễn bằng một đồ thị, trong đó mỗi miền của bản đồ được biểu diễn bằng một đỉnh; các cạnh nối hai đỉnh, nếu các miền được biểu diễn bằng hai đỉnh này là kề nhau. Đồ thị nhận được bằng cách này gọi là đồ thị đối ngẫu của bản đồ đang xét. Rõ ràng mọi bản đồ trên mặt phẳng đều có đồ thị đối ngẫu phẳng. Bài toán tô màu các miền của bản đồ là tương đương với bài toán tô màu các đỉnh của đồ thị đối ngẫu sao cho không có hai đỉnh liền kề nhau có cùng một màu, mà ta gọi là tô màu đúng các đỉnh của đồ thị.

:Định lý 4 màu của Appel-Haken: Mọi đồ thị phẳng đều có thể tô đúng bằng 4 màu.

Định lý Bốn màu đầu tiên được đưa ra như một phỏng đoán vào năm 1850 bởi một sinh viên người Anh tên là F. Guthrie và cuối cùng đã được hai nhà toán học Mỹ là Kenneth Appel và Wolfgang Haken chứng minh vào năm 1976. Trước năm 1976 cũng đã có nhiều chứng minh sai, mà thông thường rất khó tìm thấy chỗ sai, đã được công bố. Hơn thế nữa đã có nhiều cố gắng một cách vô ích để tìm phản thí dụ bằng cách cố tìm bản đồ mà cần hơn bốn màu để tô nó.

Có lẽ một trong những chứng minh sai nổi tiếng nhất trong toán học là chứng minh sai bài toán bốn màu được công bố năm 1879 bởi luật sư, nhà toán học nghiệp dư Luân Đôn tên là Alfred Kempe. Nhờ công bố lời giải của "bài toán bốn màu", Kempe được công nhận là hội viên Hội Khoa học Hoàng gia Anh. Các nhà toán học chấp nhận cách chứng minh của ông ta cho tới 1890, khi Percy Heawood phát hiện ra sai lầm trong chứng minh của Kempe. Mặt khác, dùng phương pháp của Kempe, Heawood đã chứng minh được "bài toán năm màu" (tức là mọi bản đồ có thể tô đúng bằng 5 màu).

:Định lý 5 màu của Kempe-Heawood: Mọi đồ thị phẳng đều có thể tô đúng bằng 5 màu.

Chứng minh: Cho G là một đồ thị phẳng. Không mất tính chất tổng quát có thể xem G là liên thông và có số đỉnh n ≥ 5. Ta chứng minh G được tô đúng bởi 5 màu bằng quy nạp theo n.

Trường hợp n=5 là hiển nhiên. Giả sử định lý đúng cho tất cả các đồ thị phẳng có số đỉnh nhỏ hơn n. Xét G là đồ thị phẳng liên thông có n đỉnh.

Theo Hệ quả ở trên, trong G tồn tại đỉnh a với deg(a) ≤ 5. Xoá đỉnh a và các cạnh liên thuộc với nó, ta nhận được đồ thị phẳng G’ có n−1 đỉnh. Theo giả thiết quy nạp, có thể tô đúng các đỉnh của G’ bằng 5 màu. Sau khi tô đúng G’ rồi, ta tìm cách tô đỉnh a bằng một màu khác với màu của các đỉnh kề nó, nhưng vẫn là một trong 5 màu đã dùng. Điều này luôn thực hiện được khi deg(a) < 5 hoặc khi deg(a)=5 nhưng 5 đỉnh kề a đã được tô bằng 4 màu trở xuống.

Chỉ còn phải xét trường hợp deg(a)=5 mà 5 đỉnh kề a là b, c, d, e, f đã được tô bằng 5 màu rồi. Khi đó trong 5 đỉnh b, c, d, e,f phải có 2 đỉnh không kề nhau, vì nếu 5 đỉnh đó đôi một kề nhau thì b c d e f là đồ thị đầy đủ K5 và đây là một đồ thị không phẳng, do đó G không phẳng, trái với giả thiết. Giả sử b và d không kề nhau (Hình 1).

Xoá 2 đỉnh b và d và cho kề a những đỉnh trước đó kề b hoặc kề d mà không kề a (Hình 2), ta được đồ thị mới G’’ có n−2 đỉnh. Theo giả thiết quy nạp, ta có thể tô đúng G’’ bằng 5 màu. Sau khi các đỉnh của G’’ được tô đúng rồi (Hình 2), ta dựng lại 2 đỉnh b và d, rồi tô b và d bằng màu đã tô cho a (màu 1, Hình 3), còn a thì được tô lại bằng màu khác với màu của b, c, d, e, f. Vì b và d không kề nhau đã được tô bằng cùng màu 1, nên với 5 đỉnh này chỉ mới dùng hết nhiều lắm 4 màu.. Do đó G được tô đúng bằng 5 màu.

Như vậy, Heawood mới giải được bài toán năm màu, còn bài toán bốn màu vẫn còn đó và là một thách đố đối với các nhà toán học trong suốt gần một thế kỷ. Việc tìm lời giải của bài toán bốn màu đã ảnh hưởng đến sự phát triển theo chiều hướng khác nhau của lý thuyết đồ thị.

Mãi đến năm 1976, khai thác phương pháp của Kempe và nhờ công cụ máy tính điện tử, Appel và Haken đã tìm ra lời giải của "bài toán bốn màu". Chứng minh của họ dựa trên sự phân tích từng trường hợp một cách cẩn thận nhờ máy tính. Họ đã chỉ ra rằng nếu "bài toán bốn màu" là sai thì sẽ có một phản thí dụ thuộc một trong gần 2000 loại khác nhau và đã chỉ ra không có loại nào dẫn tới phản thí dụ cả. Trong chứng minh của mình họ đã dùng hơn 1000 giờ máy. Cách chứng minh này đã gây ra nhiều cuộc tranh cãi vì máy tính đã đóng vai trò quan trọng trong chứng minh này. Chẳng hạn, liệu có thể có sai lầm trong chương trình và điều đó dẫn tới kết quả sai không? Lý luận của họ có thực sự là một chứng minh hay không, nếu nó phụ thuộc vào thông tin ra từ một máy tính không đáng tin cậy?

Ứng dụng

Những ứng dụng của bài toán tô màu đồ thị:

*Lập lịch thi: Hãy lập lịch thi trong trường đại học sao cho không có sinh viên nào có hai môn thi cùng một lúc.

Có thể giải bài toán lập lịch thi bằng mô hình đồ thị, với các đỉnh là các môn thi, có một cạnh nối hai đỉnh nếu có sinh viên phải thi cả hai môn được biểu diễn bằng hai đỉnh này. Thời gian thi của mỗi môn được biểu thị bằng các màu khác nhau. Như vậy việc lập lịch thi sẽ tương ứng với việc tô màu đồ thị này.

Chẳng hạn, có 7 môn thi cần xếp lịch. Giả sử các môn học được đánh số từ 1 tới 7 và các cặp môn thi sau có chung sinh viên: 1 và 2, 1 và 3, 1 và 4, 1 và 7, 2 và 3, 2 và 4, 2 và 5, 2 và 7, 3 và 4, 3 và 6, 3 và 7, 4 và 5, 4 và 6, 5 và 6, 5 và 7, 6 và 7. Hình dưới đây biểu diễn đồ thị tương ứng. Việc lập lịch thi chính là việc tô màu đồ thị này. Vì số màu của đồ thị này là 4 nên cần có 4 đợt thi.

*Phân chia tần số: Các kênh truyền hình từ số 1 tới số 12 được phân chia cho các đài truyền hình sao cho không có đài phát nào cách nhau không quá 240 km lại dùng cùng một kênh. Có thể chia kênh truyền hình như thế nào bằng mô hình tô màu đồ thị. Ta xây dựng đồ thị bằng cách coi mỗi đài phát là một đỉnh. Hai đỉnh được nối với nhau bằng một cạnh nếu chúng ở cách nhau không quá 240 km. Việc phân chia kênh tương ứng với việc tô màu đồ thị, trong đó mỗi màu biểu thị một kênh.

*Các thanh ghi chỉ số: Trong các bộ dịch hiệu quả cao việc thực hiện các vòng lặp được tăng tốc khi các biến dùng thường xuyên được lưu tạm thời trong các thanh ghi chỉ số của bộ xử lý trung tâm (CPU) mà không phải ở trong bộ nhớ thông thường. Với một vòng lặp cho trước cần bao nhiêu thanh ghi chỉ số? Bài toán này có thể giải bằng mô hình tô màu đồ thị. Để xây dựng mô hình ta coi mỗi đỉnh của đồ thị là một biến trong vòng lặp. Giũa hai đỉnh có một cạnh nếu các biến biểu thị bằng các đỉnh này phải được lưu trong các thanh ghi chỉ số tại cùng thời điểm khi thực hiện vòng lặp. Như vậy số màu của đồ thị chính là số thanh ghi cần có vì những thanh ghi khác nhau được phân cho các biến khi các đỉnh biểu thị các biến này là liền kề trong đồ thị.

Đồ thị phẳng có nhiều ứng dụng quan trọng trong công nghệ chế tạo mạch in. Biểu diễn phẳng của đồ thị sẽ chia mặt phẳng ra làm các miền, bao gồm cả miền không bị chặn.

Ngoài ra, một trong các ứng dụng là ánh xạ từ ảnh số 2 chiều sang một đồ thị phẳng. Trong đó, ảnh số được biểu diễn dưới dạng ma trận lưới ô vuông; mỗi ô đặc trưng cho 1 pixel.

👁️ 3 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong lý thuyết đồ thị, một **đồ thị phẳng** là một đồ thị có thể được nhúng vào mặt phẳng, tức là có thể được vẽ trên mặt phẳng sao cho các cạnh chỉ gặp
Trong toán học, **đồ thị đối ngẫu** của một đồ thị mặt phẳng G là một đồ thị G' trong đó có một đỉnh tương ứng cho mỗi miền mặt phẳng của đồ thị G,
:_Bài này chỉ viết về các định nghĩa cơ bản. Để hiểu rộng hơn, xin xem lý thuyết đồ thị. Về ý nghĩa biểu diễn hàm số trên hệ tọa độ, xem đồ thị hàm
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
nhỏ|phải|[[Đồ thị Petersen có sắc số bằng 3.]] Trong Lý thuyết đồ thị, **tô màu đồ thị** (tiếng Anh: _graph coloring_) là trường hợp đặc biệt của gán nhãn đồ thị, mà trong đó mỗi
Trong Lý thuyết đồ thị, **đồ thị cánh bướm** (tiếng Anh: _butterfly graph_) hay còn gọi là **đồ thị hình nơ** (tiếng Anh: _bowtie graph_) là một đồ thị phẳng, có 5 đỉnh và 6
Trong lý thuyết đồ thị, một **đồ thị hai phía đầy đủ** (tiếng Anh: Complete bipartite graph hoặc biclique) là một dạng đồ thị hai phía đặc biệt, trong đó mỗi đỉnh của tập thứ
thumb|phải|[[Đồ thị Petersen là đồ thị cạnh đơn vị, nó có thể vẽ trong mặt phẳng với độ dài tất cả các cạnh đều bằng một.]] **Đồ thị cạnh đơn vị** (tiếng Anh: _unit distance
**Đồ thị của hàm số** _f_ trong toán học là tập hợp tất cả các cặp có thứ tự . Nếu đầu vào _x_ là một cặp có thứ tự các số thực thì đồ
[[Hình:Hypergraph-wikipedia.svg|right|frame| Một ví dụ về siêu đồ thị, với X = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}E = \{e_1,e_2,e_3,e_4\} = \{\{v_1, v_2, v_3\}, \{v_2,v_3\}, \{v_3,v_5,v_6\}, \{v_4\}\}. ]] Trong toán học,một **siêu
Trong lý thuyết đồ thị, đồ thị **Petersen** là 1 đồ thị vô hướng với 10 đỉnh và 15 cạnh. Nó thường được sử dụng làm minh họa trong khi trình bày các lý thuyết
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
**Vùng đô thị Chicago** hay còn được gọi là **Chicagoland** là một vùng đô thị có liên hệ với thành phố Chicago và các vùng ngoại ô của nó. Khu vực này liên hệ mật
right|thumb|Đồ thị Cayley của [[nhóm tự do trên hai phần tử sinh _a_ và _b_]] Trong toán học, **đồ thị Cayley**, hay còn gọi là **đồ thị tô màu Cayley**, **biểu đồ Cayley**, **biểu đồ
nhỏ|350x350px| Một trang trại đô thị ở [[Chicago ]] **Nông nghiệp** **đô thị** **, trồng trọt** **đô thị**, hoặc **làm vườn đô thị** là hoạt động trồng trọt, chế biến và phân phối thực phẩm
**Thành phố đô thị Roma Thủ đô** () là một thành phố đô thị theo hiến pháp của vùng Lazio tại Ý. Thủ phủ của Thành phố đô thị Roma Thủ đô là thành phố
**Thành phố đô thị Torino** () thuộc vùng Piemonte, Ý. Thủ phủ là thành phố Torino. Nó thay thế tỉnh Torino từ năm 2015 và gồm có thành phố Torino cùng 315 khu tự quản
**Thành phố đô thị Bologna** () thuộc vùng Emilia Romagna của Ý. Thủ phủ là thành phố Bologna. Nó thay thế tỉnh Bologna và hoạt động từ ngày 1 tháng 1 năm 2015. Đứng đầu
**Tulum** là một trong mười một đô thị của tiểu bang Quintana Roo, Mexico. Nó là một trong những đô thị mới nhất của quốc gia khi được thành lập vào ngày 13 tháng 3
:_Đừng nhầm lẫn với SMRT Corporation ở Singapore._ **Tổng công ty đường sắt cao tốc đô thị Seoul** (SMRT) được thành lập vào 1994 để điều hành Tàu điện ngầm Seoul tuyến 5, 6, 7,
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
**Kinh Môn** là một thị xã cũ nằm ở phía đông bắc tỉnh Hải Dương, Việt Nam. Thị xã Kinh Môn thuộc vùng bán sơn địa, một dãy núi đất trong cánh cung Đông Triều
**Sơn Tây** là một thị xã thuộc thành phố Hà Nội, Việt Nam. Thị xã nguyên là thành phố Sơn Tây trực thuộc tỉnh Hà Tây. Đây là thị xã trực thuộc thành phố đầu
**Hòa Thành** là một thị xã cũ nằm ở trung tâm tỉnh Tây Ninh, Việt Nam. ## Địa lý Thị xã Hòa Thành là đô thị trung tâm có mật độ dân cư cao nhất
**Phước Long** là một thị xã thuộc tỉnh Bình Phước, Việt Nam. ## Địa lý ### Vị trí địa lý Thị xã Phước Long nằm ở đông bắc tỉnh Bình Phước, cách thành phố Đồng
**Khí hậu đô thị học** là một nhánh của bộ môn khí hậu học cụ thể liên quan đến sự tương tác giữa các khu vực đô thị với bầu khí quyển, các tác động
**Định lý năm màu** (còn gọi là _định lý bản đồ năm màu_): Mọi đồ thị phẳng (G) đều có số màu \gamma(G) \le 5 \,. Là một kết quả từ Lý thuyết đồ
phải|nhỏ|300x300px|Hệ [[Hệ tọa độ cầu|tọa độ cầu được sử dụng phổ biến trong _vật lý_ . Nó gán ba số (được gọi là tọa độ) cho mọi điểm trong không gian Euclide: khoảng cách xuyên
Trong lý thuyết đồ thị, **định lý Kuratowski**, được phát triển bởi nhà toán học người Ba Lan Kazimierz Kuratowski, là một đặc tính của đồ thị phẳng. ## Định lý 1 Đồ thị đủ
phải|nhỏ|Ví dụ về bản đồ bốn màu **Định lý bốn màu** (còn gọi là _định lý bản đồ bốn màu_) phát biểu rằng đối với bất kỳ mặt phẳng nào được chia thành các vùng
Trong thiên văn học, **hệ tọa độ thiên văn** là một hệ tọa độ mặt cầu dùng để xác định vị trí biểu kiến của thiên thể trên thiên cầu. Trong tọa độ Descartes, một
nhỏ|[[Gốm Bát Tràng]] nhỏ|Một thợ gốm tại nơi làm việc ở [[Morena, Ấn Độ ]] nhỏ|Đồ gốm từ [[Vùng đất Székely|Székely Land, Romania, được bán ở Budapest.]] **Đồ gốm** là các sản phẩm chứa đựng
**Thời đại đồ đồng** là một thời kỳ trong sự phát triển của nền văn minh khi phần lớn công việc luyện kim tiên tiến (ít nhất là trong sử dụng có hệ thống và
Các điểm trong hệ tọa độ cực với gốc cực _O_ và trục cực _L_. Điểm màu xanh lá có bán kính là 3 và góc phương vị là 60°, tọa độ là (3, 60°).
phải|nhỏ|Sơ đồ Voronoi của một tập hợp các điểm được chọn ngẫu nhiên trên mặt phẳng (tất cả các điểm này đều nằm trong hình vẽ). Trong toán học, một **sơ đồ Voronoi**, đặt tên
**Nghĩa Lộ** là một thị xã thuộc tỉnh Yên Bái, Việt Nam. ## Địa lý thumb|Cánh đồng Nghĩa Lộ vào vụ nhỏ|Cánh đồng lúa chín ở Mường Lò ### Vị trí địa lý Thị xã
**Thí nghiệm Michelson-Morley** là một thí nghiệm quan trọng trong lịch sử vật lý học, thực hiện năm 1887 bởi Albert Michelson và Edward Morley tại cơ sở mà ngày nay là Đại học Case
Trong lý thuyết đồ thị, **Đa thức màu** (tiếng Anh: _Chromatic polynomial_) của một đồ thị biểu diễn số cách tô màu các đỉnh của đồ thị đó theo số màu. Đa thức màu là
**Bản đồ học** hay **Đồ bản học** là khoa học nghiên cứu và phản ánh sự phân bố không gian, sự phối hợp mối liên hệ giữa các đối tượng, hiện tượng tự nhiên và
**Tốc độ ánh sáng** trong chân không, ký hiệu là , là một hằng số vật lý cơ bản quan trọng trong nhiều lĩnh vực vật lý. Nó có giá trị chính xác bằng 299.792.458 m/s
phải|Cây bao trùm nhỏ nhất của một [[đồ thị phẳng. Mỗi cạnh có ghi kèm trọng số, cụ thể trong hình này là tỷ lệ với chiều dài.]] Với một đồ thị liên thông, vô
**Tìm kiếm ưu tiên chiều sâu** hay **tìm kiếm theo chiều sâu** () là một thuật toán duyệt hoặc tìm kiếm trên một cây hoặc một
thumb|Bản đồ địa hình với các đường đồng mức thumb|Phần của bản đồ nói trên được biểu diễn kiểu địa hình bóng [[:en:shaded relief|shaded relief, minh họa các đường đồng mức thể hiện địa vật]]
**Nam Ấn Độ** () là một khu vực của Ấn Độ gồm các bang Andhra Pradesh, Karnataka, Kerala, Tamil Nadu và Telangana cùng các lãnh thổ liên bang Andaman và Nicobar, Lakshadweep và Puducherry, chiếm
phải|Sơ đồ xiên. **Sơ đồ xiên** hay **biểu đồ chu kỳ** (tiếng Anh: _Cyklogram_, _Linear Scheduling Method_ (LSM), hay _Line of Balance_ (LoB), tiếng Séc: _Cyklogram_), là phương pháp thể hiện tiến độ của dự
thumb|Davisson và Germer năm 1927 **Thí nghiệm Davisson–Germer** là một thí nghiệm được thực hiện từ năm 1923 đến 1927 bởi Clinton Davisson và Lester Germer tại Western Electric (sau này là Bell Labs), trong
**Thăm dò trọng lực** (Gravimetry) là một phương pháp của _Địa vật lý_, thực hiện đo Trọng trường Trái Đất để xác định ra phần _dị thường trọng lực_, từ đó xác định phân bố
**Thuật toán Borůvka** là một thuật toán để tìm cây bao trùm nhỏ nhất trên đồ thị. Thuật toán này được xuất bản lần đầu năm 1926 bởi Otakar Borůvka dưới dạng một phương pháp
Trong hình học, **độ cong** thể hiện sự lệch hướng tại một điểm trên đường cong, mặt cong hay không gian Riemann nói chung. ## Độ cong của một đường cong ### Định nghĩa Theo
**Suy giảm độ dốc** (còn gọi là **giảm độ dốc**, tiếng Anh: **gradient descent**) là một thuật toán tối ưu hóa lặp bậc nhất để tìm một cực trị của một hàm khả vi. Để