Hình học elliptic là một ví dụ về hình học trong đó tiên đề song song của Euclid là không đúng. Thay vào đó, như trong hình học cầu, không có đường thẳng song song vì hai đường thẳng trên mặt cầu luôn giao nhau. Tuy nhiên, không giống như trong hình học cầu, hai đường thường được giả định là giao nhau tại một điểm (chứ không phải hai). Bởi vì điều này, hình học elip được mô tả trong bài viết này đôi khi được gọi là hình học elliptic đơn trong khi hình học hình cầu đôi khi được gọi là hình học elliptic đôi.
Sự xuất hiện của hình học này trong thế kỷ XIX đã kích thích sự phát triển của hình học phi Euclide nói chung, bao gồm cả hình học hyperbol.
Hình học elliptic có nhiều tính chất khác với các đặc tính của hình học phẳng Euclide cổ điển. Ví dụ: tổng các góc trong của bất kỳ tam giác nào luôn lớn hơn 180°.
Định nghĩa
Trong hình học elip, hai đường thẳng vuông góc với một đường thẳng đã cho phải cắt nhau. Trong thực tế, các đường vuông góc ở một phía tất cả giao nhau tại một điểm duy nhất gọi là cực tuyệt đối của đường thẳng đó. Các đường vuông góc ở phía bên kia cũng giao nhau tại một điểm. Tuy nhiên, không giống như trong hình học hình cầu, các cực ở hai bên là như nhau. Điều này là do không có điểm đối cực trong hình học elip. Ví dụ, điều này đạt được trong mô hình siêu phẳng (được mô tả bên dưới) bằng cách tạo các "điểm" trong hình học của chúng ta thực sự là các cặp điểm đối diện trên một hình cầu. Lý do để làm điều này là vì nó cho phép hình học elliptic thỏa mãn tiên đề rằng có một đường thẳng duy nhất đi qua hai điểm bất kỳ.
Mỗi điểm tương ứng với một đường cực tuyệt đối mà nó là cực tuyệt đối. Bất kỳ điểm nào trên đường cực này tạo thành một cặp liên hợp tuyệt đối với cực. Một cặp điểm như vậy là trực giao và khoảng cách giữa chúng là một góc phần tư.
👁️
0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Hình học elliptic** là một ví dụ về hình học trong đó tiên đề song song của Euclid là không đúng. Thay vào đó, như trong hình học cầu, không có đường thẳng song song
nhỏ|300x300px| Trên một mặt cầu, tổng các góc của một tam giác không bằng 180 °. Một hình cầu không phải là không gian Euclide, nhưng cục bộ các định luật của hình học Euclide
**Hình học phi Euclid** là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất một trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những công trình
phải|khung| Các đường thẳng qua một điểm _P_ cho trước và tiệm cận với đường _R_ phải|nhỏ|250x250px| Một hình tam giác nằm trong một mặt phẳng hình yên ngựa (một [[paraboloid hyperbol), cùng với hai
thumb|Bảng các yếu tố trong hình học, trích từ cuốn _[[Cyclopaedia_ năm 1728.]] **Hình học** (geometry) bắt nguồn từ ; _geo-_ "đất", _-metron_ "đo đạc", nghĩa là đo đạc đất đai, là ngành toán học
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Trong toán học, **chuỗi** có thể được nói là, việc cộng lại vô hạn các số lại với nhau bất đầu từ số ban đầu. Chuỗi là phần quan trọng của vi tích phân và
thumb|Hình vẽ minh họa cho phát biểu gốc của Euclid về tiên đề song song. Trong hình học, **định đề song song** (tiếng Anh: _parallel postulate_) hay **định đề thứ năm của Euclid** do là
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
Đây là **danh sách các nhà toán học người Do Thái**, bao gồm các nhà toán học và các nhà thống kê học, những người đang hoặc đã từng là người Do Thái hoặc có
**Cơ học thiên thể** là một nhánh của thiên văn học giải quyết các vấn đề chuyển động và hiệu ứng hấp dẫn của các thiên thể. Lĩnh vực này vận dụng các nguyên lý
Đây là bài nhằm phân loại, sắp xếp theo chủ đề các bài trong lĩnh vực mật mã học. ## Các thuật toán mã hóa cổ điển * Mật mã khóa tự động [http://en.wikipedia.org/wiki/Autokey_cipher] *
**Igor Rostislavovich Shafarevich** (; sinh ngày 3 tháng 6 năm 1923 – mất ngày 19 tháng 2 năm 2017) là nhà toán học Liên Xô và Nga có cống hiến cho hai nhánh lý thuyết
nhỏ|Trong một 2-mặt cầu thông thường, bất kì một vòng kín nào có thể thu nhỏ một cách liên tục thành một điểm trên mặt cầu. Liệu điều kiện này có đặc trưng cho 2-mặt
Trong hình học số học, **giả thuyết Mordell** là giả thuyết được đặt bởi Louis Mordell rằng đường cong với giống lớn hơn 1 trên trường **Q** của số hữu tỉ có hữu hạn số
Trong toán học, cụ thể là ngành giải tích phức, một **hàm phân hình** trên một tập con mở của mặt phẳng phức là một hàm số chỉnh hình trên toàn bộ _ngoại trừ_ một
thumb|Từ trái qua phải: một mặt với độ cong Gauss âm ([[hyperboloid), mặt với độ cong Gauss bằng 0 (hình trụ), và mặt có độ cong Gauss dương (mặt cầu).]] Trong hình học vi phân,
**Khâu Thành Đồng** (tên tiếng Anh: **Shing-Tung Yau**, chữ Hán: 丘成桐, sinh ngày 4 tháng 4 năm 1949), là một nhà toán học Hoa Kỳ gốc Hoa, giữ ghế giáo sư William Caspar Graustein tại
phải|Hình vẽ miêu tả [[hàm số sin(_x_) và các xấp xỉ Taylor của nó, tức là các đa thức Taylor bậc 1, 3, 5, 7, 9, 11 và
phải|Bài toán II.8 trong _Arithmetica_ của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670) **Định lý cuối cùng của Fermat** (hay còn gọi là
**Nguyễn Cảnh Toàn** (28 tháng 9 năm 1926 – 8 tháng 2 năm 2017) là một Giáo sư Toán học Việt Nam, nguyên Hiệu trưởng trường Đại học Sư phạm Hà Nội, Đại học Sư
**Adrien-Marie Legendre** (18 tháng 9 năm 1752 – 10 tháng 1 năm 1833) là một nhà toán học người Pháp. Ông có nhiều đóng góp quan trọng vào thống kê, số học, đại số trừu tượng
**Phương pháp phần tử hữu hạn** là phương pháp số gần đúng để giải các bài toán được mô tả bởi các phương trình vi phân đạo hàm riêng trên miền xác định có hình
**Vladimir Gershonovich Drinfeld** (; ; sinh ngày 14 tháng 2 năm 1954), là một nhà toán học có xuất thân từ Liên Xô cũ, đã di cư sang Hoa Kỳ và hiện đang làm việc
**Christian Felix Klein** (25 tháng 4 năm 1849 – 22 tháng 6 năm 1925) là nhà toán học người Đức, được biết đến với những nghiên cứu của ông trong lý thuyết nhóm, lý thuyết
thumb|[[đồ thị Cayley|Đồ thị Cayley Q8 cho thấy sáu chu trình nhân bởi , và . (Nếu ảnh được mở trong Wikimedia Commons bằng cách nhấn đúp vào nó thì các chu trình có thể
thumb|Một hình elip (đỏ) bao quanh mặt cắt của một [[hình nón với một mặt phẳng nghiêng]] thumb|Các thành phần của hình elip thumb|Các hình elip với tâm sai tăng dần Trong toán học, một
Bài viết này là **danh sách các thuật toán** cùng một mô tả ngắn cho mỗi thuật toán. ## Thuật toán tổ hợp ### Thuật toán tổ hợp tổng quát * Thuật toán Brent: tìm
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Các bài toán thiên niên kỷ** (tiếng Anh: _Millennium Prize Problems_) là bảy bài toán nổi tiếng và phức tạp được lựa chọn bởi Viện Toán học Clay vào ngày 24 tháng 5 năm 2000,
Trong không gian ba chiều, **mặt nón** là mặt tạo bởi một đường thẳng **l** chuyển động tựa trên một đường cong **ω** và luôn luôn đi qua một điểm cố định **P**. Đường ω
**Chứng minh của Wiles về định lý cuối cùng của Fermat** là chứng minh toán học của nhà toán học người Anh Andrew Wiles về một trường hợp đặc biệt của định lý Module đối
**Manjul Bhargava** (tiếng Phạn: मंजुल भार्गव) (sinh ngày 08 tháng 8 năm 1974) là một nhà toán học người Mỹ gốc Canada Ấn Độ. Ông là giáo sư toán học R. Brandon Fradd tại Đại
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
**Karl Theodor Wilhelm Weierstrass** (**Weierstraß**) (31 tháng 10 năm 1815 – 19 tháng 2 năm 1897) là một nhà toán học người Đức, người được coi là "cha đẻ của giải tích toán học". ##
Trong toán học và vật lý, **toán tử Laplace** hay **Laplacian**, ký hiệu là hoặc được đặt tên theo Pierre-Simon de Laplace, là một toán tử vi phân, đặc biệt trong các toán
**Lôgarit rời rạc** là sự tiếp nối của phép tính lôgarit trên trường số thực vào các nhóm hữu hạn. Ta nhắc lại rằng với hai số thực x, y và cơ số _a_>0, _a_≠1,nếu
**Phương trình** là một biểu thức toán học có chứa các biến số và các phép toán, trong đó các giá trị của các biến được tìm kiếm để làm cho cả biểu thức trở
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
**Bitcoin** (ký hiệu: **BTC, XBT, **) là một loại tiền mã hóa, được phát minh bởi một cá nhân hoặc tổ chức vô danh dùng tên Satoshi Nakamoto dưới dạng phần mềm mã nguồn mở
Trong vật lý và các ngành khoa học khác, một **hệ thống phi tuyến**, trái ngược với một hệ thống tuyến tính, là một hệ thống mà không thỏa mãn nguyên tắc xếp chồng -
**Federigo Enriques** (sinh ngày 5 tháng 1 năm 1871 - mất ngày 14 tháng 6 năm 1946) là một nhà toán học người Ý, nổi tiếng là người đầu tiên đưa ra một phân loại
thumb|right|[[Đường cong Tschirnhausen là một ví dụ về đường cong đại số bậc ba.]] Trong toán học, **đường cong phẳng đại số affin** là tập nghiệm của đa thức hai biến. **đường cong phẳng đại
Phân tích phương trình vi phân từng phần bằng phương pháp số là một nhánh nghiên cứu của phân tích số, hay còn gọi là giải tích số, một lĩnh vực nghiên cứu về lời
thumb|Mặt tạo bởi quay một phần của đường cong xung quanh trục . Một **mặt tròn xoay** là một bề mặt trong không gian Euclid tạo bằng cách quay một đường cong (**đường sinh**) xung
thumb|Một quỹ đạo chuyển tiếp Hohmann, đường số 2 màu vàng, nối từ quỹ đạo số 1 đến quỹ đạo lớn hơn số 3. thumb |right |Một quỹ đạo chuyển tiếp Hohmann để phóng tàu
**Noam David Elkies** (sinh ngày 25 tháng 8 năm 1966) là một nhà toán học người Mỹ và là giáo sư môn toán học tại Đại học Harvard. Lúc anh 26 tuổi, ông trở thành
phải|Chọn một số ngẫu nhiên lớn để sinh cặp khóa. phải|Dùng khoá công khai để mã hóa, nhưng dùng khoá bí mật để giải mã. phải|Dùng khoá bí mật để ký một thông báo;dùng khoá
**Tăng áp lực nội sọ vô căn** (viết tắt: **TALNS vô căn**), trước đây được gọi là **tăng áp lực nội sọ nguyên phát**, **tăng áp lực nội sọ lành tính** hay **giả u não**
Trong kỹ thuật, **hàm truyền** (còn được gọi là **hàm hệ thống** hoặc **hàm mạng**) của thành phần hệ thống điện tử hoặc điều khiển là một hàm toán học mô hình hóa lý thuyết