✨Giả thuyết Poincaré

Giả thuyết Poincaré

nhỏ|Trong một 2-mặt cầu thông thường, bất kì một vòng kín nào có thể thu nhỏ một cách liên tục thành một điểm trên mặt cầu. Liệu điều kiện này có đặc trưng cho 2-mặt cầu? Câu trả lời là có, và nó đã được biết đến từ lâu. Giả thuyết Poincare cũng đặt ra câu hỏi tương tự cho 3-mặt cầu, mà hình dung khó hơn. Giả thuyết Poincare là một trong những giả thuyết toán học nổi tiếng và quan trọng bậc nhất do Jules-Henri Poincaré đưa ra năm 1904, và được Grigori Perelman chứng minh vào năm 2002, 2003. Trong 100 năm tồn tại, nó trực tiếp và gián tiếp đem về 4 huy chương Fields cho Smale (1966), Thurston (1982), Freedman (1986) và Perelman (2006).

Lịch sử

Cuối thế kỷ 19 đến đầu thế kỷ 20, Jules Henri Poincaré có lẽ là nhà toán học vĩ đại nhất của nước Pháp, thậm chí của cả thế giới ngày đó. Tác giả của rất nhiều công trình toán học, vật lý học, triết học từng đoạt được nhiều giải thưởng quốc tế, trở thành thành viên hay chủ tịch của biết bao hiệp hội bác học, thành viên Viện hàn lâm khoa học Pháp, Henri Poincaré là hình ảnh tiêu biểu tốt đẹp nhất về sự thành đạt trí tuệ và xã hội mà giai cấp tư sản thế kỉ XIX có thể sản sinh. Đó cũng là nhà bác học "xuyên ngành" cuối cùng: như một triết gia về phương pháp luận, ông là tác giả những công trình kinh điển về nền tảng phương pháp khoa học, về cơ cấu não trạng của quá trình khám phá; ở vị trí nhà vật lý, ông đã 12 lần được đề nghị giải Nobel, và ngày nay được coi là đồng tác giả của thuyết tương đối "thu hẹp"; với tư cách nhà toán học, bên cạnh David Hilbert, ông được coi là nhà toán học vĩ đại nhất, đồng thời là "bậc thầy phổ quát cuối cùng", bao trùm đại số học lẫn hình học, lý thuyết số và hình học. Chính ông, trong một công trình năm 1895, đã sáng lập ra một ngành mới của hình học mà ông đặt tên là "analysis situs", ngày nay gọi là tôpô học (topo, tiếng Hy Lạp có nghĩa: nơi, không gian).

Di sản đồ sộ của ông cho đến nay vẫn còn đang được hậu sinh khai thác. Đặc biệt giả thuyết Poincaré do ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20.

Phát biểu

Nếu một đa tạp ba chiều compact không có biên là đơn liên, thì nó đồng phôi với mặt cầu ba chiều.

Ý nghĩa trực quan

Để dễ hình dung, bạn hãy lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ: bạn sẽ nhận được hai mảnh bóng vỡ. Làm lại như vậy với một cái phao (hay một vật hình xuyến): lần này bạn không được hai mảnh phao vỡ mà chỉ được có một. Trong hình học topo, người ta gọi quả bóng -đối lập với cái phao- là một bề mặt liên thông đơn giản. Một điều rất dễ chứng minh là trong không gian 3 chiều, mọi bề mặt liên thông đơn giản hữu hạn và không có biên đều là bề mặt của một vật hình cầu. Vào năm 1904, Henri Poincaré đặt ra câu hỏi: Liệu tính chất này của các vật hình cầu có còn đúng trong không gian bốn chiều. Điều kỳ lạ là các nhà hình học topo đã chứng minh được rằng điều này đúng trong những không gian lớn hơn hoặc bằng 5 chiều, nhưng chưa ai chứng minh được tính chất này vẫn đúng trong không gian bốn chiều.

Chính xác hơn, những người nghiên cứu toán học định nghĩa hai không gian tôpô là đồng phôi nếu có một song ánh liên tục từ không gian này vào không gian kia sao cho ánh xạ ngược cũng liên tục, nghĩa là hai không gian giống như nhau về mặt tôpô. Một đa tạp ba chiều không có biên là một không gian tôpô mà mỗi điểm có một lân cận đồng phôi với một lân cận của không gian Euclide ba chiều \mathbb{R}^3, nghĩa là về mặt địa phương một đa tạp ba chiều không khác gì \mathbb{R}^3. Một không gian tôpô là đơn liên nếu mỗi đường cong đóng liên tục trên đó đều có thể được "thắt" một cách liên tục thành một điểm, nghĩa là nó đồng luân liên tục với một điểm, nói cách khác nhóm cơ bản của không gian chỉ chứa phần tử đơn vị.

Chứng minh của Perelman

nhỏ|Grigori Perelman, người đã chứng minh giả thuyết Poincaré Giả thuyết Poincaré từng làm nhiều bộ óc toán học thế giới của thế kỉ 20 phải phát sốt và biết bao chứng minh sai (cũng như những "chứng minh" không được chú ý đến) đã từng được đưa ra. Viện Toán học Clay (Hoa Kỳ) đành xếp nó vào một trong 7 bài toán khó của thiên niên kỷ chưa giải được để thách đố thế kỉ 21 với giải thưởng lớn tới một triệu USD.

Rất may là không lâu sau đó, vào cuối năm 2002, nhà toán học Nga kỳ dị nhưng xuất sắc Grigori Perelman tại Viện toán học Steklov (thành phố St. Petersburg) đã công bố trên Internet hai bản nghiên cứu dài khoảng 61 trang viết tay. Perelman dường như đã chứng minh được định lý, nhưng ông chưa đưa ra một công trình đầy đủ trên các tạp chí khoa học. Nhiều nhóm chuyên gia hàng đầu đã bắt tay vào kiểm tra công trình rất phức tạp của Perelman. Trong một thời gian dài không ai dám đứng ra đoan chắc rằng công trình này là đúng, tuy rằng không có lỗi nghiêm trọng nào được phát hiện. Đến hè năm 2006 thì ba nhóm độc lập với nhau đã công bố kết quả công việc kiểm tra công phu của mình và sự đồng thuận đã được hình thành trong các chuyên gia là Perelman đã chứng minh Giả thuyết Poincaré, chấm dứt sự tồn tại của nó sau gần 1 thế kỷ. Còn việc Perelman chứng minh được toàn bộ Giả thuyết Hình học hóa hay chưa thì có lẽ còn chờ thêm thời gian.

Dòng Ricci và phẫu thuật hình học

Năm 1982, Hamilton đưa ra một chương trình để chứng minh giả thuyết Poincaré. Ý tưởng của Hamilton là đặt một metric Riemann lên đa tạp ba chiều đóng đơn liên, sau đó tìm cách cải thiện metric này; ví dụ như nếu metric được cải thiện đến mức nó có độ cong dương hằng thì, theo các kết quả cổ điển trong hình học Riemann, đa tạp ba chiều phải là một hình cầu. Hamilton sử dụng phương trình dòng Ricci để cải thiện metric:

\partialt g{ij}=-2 R_{ij}
trong đó g là metric và R là độ cong Ricci, và ta hi vọng rằng khi t tăng, đa tạp cùng với metric của nó sẽ trở nên dễ hiểu hơn.

Trong một số trường hợp, Hamilton chỉ ra rằng phương pháp này đủ hiệu quả, chẳng hạn như nếu đa tạp Riemann có độ cong Ricci dương mọi nơi. Tuy nhiên, với một metric Riemann bất kỳ, dòng Ricci tạo ra các kỳ dị phức tạp hơn.

Một thành tựu lớn của Perelman là chỉ ra rằng, trong một số trường hợp, các kỳ dị này sẽ trông giống như hình cầu hoặc hình trụ bị co lại. Với một mô tả định lượng của hiện tượng này, Perelman cắt đa tạp quanh các kỳ dị, chia đa tạp thành nhiều mảnh, và tiếp tục dòng Ricci trên mỗi mảnh nhỏ. Quá trình này được gọi là dòng Ricci với phẫu thuật.

Giả thuyết hình học hóa

Vào khoảng những năm cuối thập kỉ 1970 nhà toán học Mỹ William Thurston có những quan sát theo một hướng mới. Ông nhận thấy là trong trường hợp hai chiều mặt cầu là mặt duy nhất mà trên đó có thể đặt hình học elliptic (tổng ba góc trong một tam giác lớn hẳn hơn 180 độ; hai đường thẳng bất kì đều cắt nhau; độ cong của mặt là hằng số dương), trên mặt xuyến một lỗ có hình học Euclide (tổng ba góc trong một tam giác bằng 180 độ; qua một điểm ở ngoài một đường thẳng chỉ có một đường thằng song song với đường thẳng đã cho; độ cong của mặt luôn luôn bằng không); với tất cả các mặt xuyến còn lại ta có hình học hyperpolic (tổng ba góc trong một tam giác nhỏ hơn 180 độ; qua một điểm ở ngoài một đường thẳng có thể vẽ được vô số đường thằng song song với đường thẳng đã cho; độ cong của mặt là hằng số âm). Thurston tổng quát hoá quan sát này lên không gian ba chiều, một cách nôm na, mỗi đa tạp không biên compact ba chiều đều có thể được cắt thành từng mảnh mà trên mỗi mảnh có một hình học duy nhất. Đây được gọi là Giả thuyết Hình học hoá; nó chứa Giả thuyết Poincaré như là trường hợp riêng. Thurston được tặng giải Fields năm 1982.

Giả thuyết Hình học hoá của Thurston mở ra một hướng mới để nghiên cứu Giả thuyết Poincaré. Vì độ cong của một đa tạp trơn được định nghĩa thông qua các đạo hàm bậc nhất và bậc hai nhất định (trong phép tính Vi Tích phân độ cong của một đường cong với toạ độ được tham số hóa được cho thông qua các đạo hàm bậc nhất và bậc hai của tọa độ) nên xuất hiện khả năng sử dụng những công cụ của Hình học vi phân, Giải tích và Phương trình đạo hàm riêng. Một chương trình nhằm chứng minh Giả thuyết Hình học hoá đã được đề ra bởi nhà toán học Mỹ Richard Hamilton vào đầu thập kỉ 1980.

Giả thuyết Poincaré mở rộng

Giả thuyết tổng quát hơn cho đa tạp n-chiều được gọi là Giả thuyết Poincaré mở rộng. Trong trường hợp n=2 người ta đã biết từ lâu và không quá khó để chứng tỏ rằng mặt cầu hai chiều là mặt không biên compact duy nhất mà là đơn liên. Những mặt xuyến là không đơn liên vì chúng có những "lỗ" và do đó có những đường cong đóng không thể thắt lại được.

Những cố gắng để nghiên cứu Giả thuyết Poincaré mở rộng đã dẫn đến những tiến bộ to lớn trong ngành Tôpô và trong Toán học nói chung. Năm 1960 nhà toán học lớn người Mỹ Stephen Smale đã chứng minh Giả thuyết Poincaré mở rộng cho mọi n lớn hơn hay bằng 5. Công cụ chủ yếu của ông là lý thuyết Morse trong Tôpô vi phân. Nhờ vậy Smale được trao giải Fields năm 1966. Mãi đến năm 1982 trường hợp n=4 mới được giải quyết nhờ công của nhà toán học Mỹ Michael Freedman. Công cụ của ông lại hoàn toàn là Tôpô Hình học, nghĩa là nói chung không sử dụng các cấu trúc vi phân hay đại số. Freedman rồi cũng được trao giải thưởng Fields năm 1986.

Đóng góp to lớn vào những công trình nghiên cứu dẫn đến các kết quả này và những tiến bộ sau đó phải kể đến John Milnor (giải Fields 1966), John Stallings, Papakyriapoulos, Sergey Novikov (giải Fields 1970), Robion Kirby, Simon Donaldson (giải Fields 1986) và nhiều người khác. Những phương pháp khác nhau đã được sử dụng: Tôpô vi phân, Tôpô đại số, Tôpô hình học, và cả những ý tưởng từ vật lý lý thuyết.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
nhỏ|Trong một 2-mặt cầu thông thường, bất kì một vòng kín nào có thể thu nhỏ một cách liên tục thành một điểm trên mặt cầu. Liệu điều kiện này có đặc trưng cho 2-mặt
** Jules Henri Poincaré ** (29 tháng 4 năm 1854 – 17 tháng 6 năm 1912) là một nhà toán học, nhà vật lý lý thuyết, và là một triết gia người Pháp. Ông là
**Lịch sử của thuyết tương đối hẹp** bao gồm rất nhiều kết quả lý thuyết và thực nghiệm do nhiều nhà bác học khám phá như Albert Abraham Michelson, Hendrik Lorentz, Henri Poincaré và nhiều
Trong vật lý học, **thuyết tương đối hẹp** (**SR**, hay còn gọi là **thuyết tương đối đặc biệt** hoặc **STR**) là một lý thuyết vật lý đã được xác nhận bằng thực nghiệm và chấp
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
nhỏ|243x243px|Henri Poincaré **Nhóm Poincaré**, được đặt theo tên Henri Poincaré (1905), lần đầu tiên được Hermann Minkowski (1908) định nghĩa là nhóm đẳng cự của không gian Minkowski. Đây là một nhóm Lie không giao
**Thuyết tương đối văn hóa** là nguyên tắc mà những người khác cần hiểu về tín ngưỡng và hoạt động của mỗi cá nhân theo văn hóa của riêng cá nhân đó. Nó được thiết
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
phải|nhỏ|250x250px|Ma trận biến đổi _A_ tác động bằng việc kéo dài vectơ _x_ mà không làm đổi phương của nó, vì thế _x_ là một vectơ riêng của _A_. Trong đại số tuyến tính, một
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
[[Hàm Weierstrass, một loại hình phân dạng mô tả một chuyển động hỗn loạn]] phải||Quỹ đạo của hệ Lorenz cho các giá trị _r_ = 28, σ = 10, _b_ = 8/3 **Thuyết hỗn loạn**
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
**Max Wilhelm Dehn** (sinh ngày 13 tháng 11 năm 1878 – mất ngày 27 tháng 6 năm 1952) là nhà toán tọc Đức nổi tiếng bởi các công trình trong hình học. tô pô và
**Grigori Yakovlevich Perelman** (, sinh ngày 13 tháng 6 năm 1966), đôi khi còn được biết đến với tên **Grisha Perelman**, là một nhà toán học người Nga có nhiều đóng góp đến hình học
**"Manifold Destiny"** (tạm dịch: _Vận mệnh đa tạp_) là một bài viết trên tạp chí _The New Yorker_ của hai tác giả Sylvia Nasar và David Gruber, xuất bản vào số báo ngày 28 tháng
**Các bài toán thiên niên kỷ** (tiếng Anh: _Millennium Prize Problems_) là bảy bài toán nổi tiếng và phức tạp được lựa chọn bởi Viện Toán học Clay vào ngày 24 tháng 5 năm 2000,
**Georg Ferdinand Ludwig Philipp Cantor** (;  – 6 tháng 1 năm 1918) là một nhà toán học người Đức, được biết đến nhiều nhất với tư cách cha đẻ của lý thuyết tập hợp, một
**Tốc độ ánh sáng** trong chân không, ký hiệu là , là một hằng số vật lý cơ bản quan trọng trong nhiều lĩnh vực vật lý. Nó có giá trị chính xác bằng 299.792.458 m/s
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Trong vật lý học, **phép biến đổi Lorentz** (hoặc **biến đổi Lorentz**) đặt theo tên của nhà vật lý học người Hà Lan Hendrik Lorentz là kết quả thu được của Lorentz và những người
phải|nhỏ|429x429px| [[Hendrik Lorentz|Hendrik Antoon Lorentz (1853 bóng1928), sau đó nhóm Lorentz được đặt tên. ]] Trong vật lý và toán học, **nhóm Lorentz** là nhóm của tất cả các phép biến đổi Lorentz của không
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
**Josiah Willard Gibbs** (11 tháng 2 năm 1839 - 28 tháng 4 năm 1903) là một nhà khoa học người Mỹ đã có những đóng góp lý thuyết đáng kể cho vật lý, hóa học
**Louis-Victor-Pierre-Raymond**, đời thứ 7 trong dòng họ [https://en.wikipedia.org/wiki/House_of_Broglie Duc De Broglie], (; ; 15, Tháng 8, 1892 – 19, Tháng 3, 1987)là một nhà Vật lý người Pháp có những đóng góp đột phá trong
**Nhanh hơn ánh sáng** (_Tiếng anh: Faster than light hay FTL_) là khái niệm thường dùng để chỉ việc truyền thông hoặc di chuyển của vật chất nhanh hơn tốc độ ánh sáng. Theo Thuyết
**Tôpô đại số** là một nhánh của toán học sử dụng các công cụ của đại số để nghiên cứu các không gian tôpô. ## Phương pháp bất biến đại số Mục đích là xem
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
:_Bài này nói về một khái niệm vật lý lý thuyết. Xem các nghĩa khác của Ête tại Ête (định hướng)_ **Ête** là một khái niệm thuộc vật lý học đã từng được coi như
**Các bài toán của Hilbert** là một danh sách gồm 23 vấn đề (bài toán) trong toán học được nhà toán học Đức David Hilbert đưa ra tại Hội nghị toán học quốc tế tại
nhỏ|phải|Logo của ban tổ chức cuộc thi IMO (International Mathematical Olympiad) **Olympic Toán học Quốc tế** (tiếng Anh: _International Mathematical Olympiad_, thường được viết tắt là **IMO**) là một kì thi Toán học cấp quốc
Quan sát cho rằng việc mở rộng của vũ trụ sẽ tiếp tục mãi mãi. Nếu vậy, vũ trụ sẽ lạnh khi nó mở rộng, cuối cùng trở nên quá lạnh để duy trì sự
**Terence "Terry" Tao** (tiếng Trung: 陶哲轩; sinh ngày 17 tháng 7 năm 1975) là nhà toán học mang quốc tịch Úc - Mỹ gốc Trung Quốc chuyên về giải tích điều hòa, phương trình đạo
**Viện Toán học Clay**, (tiếng Anh: **Clay Mathematics Institute**, viết tắt là **CMI**) là một tổ chức không vụ lợi do Quỹ tư nhân lập ra ở Cambridge, Massachusetts, Hoa Kỳ. Viện cống hiến cho
**7** (**bảy** hay **bẩy**) là một số tự nhiên ngay sau 6 và ngay trước 8. ** Số bảy là số nguyên tố. ** Số bảy là số may mắn của người Nhật Bản. **
phải|Một tam giác nhúng trên mặt yên ngựa (mặt [[hyperbolic paraboloid), cũng như hai đường thẳng _song song_ trên nó.]] **Hình học vi phân** là một nhánh của toán học sử dụng các công cụ
**Lev Genrikhovich Schnirelmann** (hay **Shnirelman**, **Shnirel'man**; ; Sinh ngày 2 tháng 1 năm 1905 – Mất ngày 24 tháng 9 năm 1938) là nhà toán học Liên Xô làm việc trên lý thuyết số, tôpô
Trang web **arXiv** (phát âm a-kai từ chữ archive (nghĩa là lưu trữ), nếu như "X" là chữ cái Hy Lạp _Chi_, χ) là một cơ sở dữ liệu lưu trữ điện tử dạng tiền
**Michael Hartley Freedman** sinh ngày 21/4/1951 tại Los Angeles, California, là nhà toán học người Mỹ làm việc ở Microsoft Station Q. Năm 1986, ông đã đoạt Huy chương Fields cho công trình nghiên cứu
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
Trong lý thuyết trường lượng tử, trạng thái chân không lượng tử (còn gọi là trạng thái chân không lượng tử hoặc trạng thái chân không) là trạng thái lượng tử có năng lượng thấp
**Amalie Emmy Noether** (, ; ; 23 tháng 3 năm 1882 – 14 tháng 4 năm 1935) là một nhà toán học người Đức nổi tiếng vì những đóng góp nền tảng và đột phá
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
**Giả thuyết về sự kết thúc của vũ trụ** là một chủ đề trong vật lý vũ trụ. Các giả thiết khoa học trái ngược nhau đã dự đoán ra nhiều khả năng kết thúc
Triều lên (nước lớn) và triều xuống (nước ròng) tại [[vịnh Fundy.]] **Thủy triều** là hiện tượng nước biển, nước sông... lên xuống trong một chu kỳ thời gian phụ thuộc biến chuyển thiên văn.
Thí nghiệm của [[James Prescott Joule, năm 1843, để phát hiện sự chuyển hóa năng lượng từ dạng này (cơ năng) sang dạng khác (nhiệt năng)]] Trong vật lý và hóa học, **định luật bảo
nhỏ|[[Giuseppe Peano]] Trong logic toán học, các **tiên đề Peano**, còn được gọi là các **tiên đề Peano –** **Dedekind** hay các **định đề Peano**, là các tiên đề cho các số tự nhiên được
phải|nhỏ|Các số tự nhiên dùng để đếm (một quả táo, hai quả táo, ba quả táo....). Trong toán học, các **số tự nhiên** được sử dụng để đếm (như trong "có _sáu_ đồng xu trên
nhỏ|Nhà vật lý [[Ludwig Boltzmann, người mà bộ não Boltzmann được đặt tên theo]] **Bộ não Boltzmann** là một thí nghiệm tưởng tượng ngụ ý rằng khả năng để cho một bộ não hình thành
Nói chung, **toán học thuần túy** là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng. Đây là một loại hoạt động toán học có thể nhận biết được từ thế kỷ 19