✨Henri Poincaré

Henri Poincaré

Jules Henri Poincaré (29 tháng 4 năm 1854 – 17 tháng 6 năm 1912) là một nhà toán học, nhà vật lý lý thuyết, và là một triết gia người Pháp. Ông là một người đa tài và được coi là người có tầm hiểu biết sâu rộng các lĩnh vực khoa học như trong toán học.

Là một nhà toán học và vật lý, ông đã có rất nhiều đóng góp căn bản cho toán học thuần túy, toán học ứng dụng, vật lý toán, và cơ học thiên thể.Ông cũng là người đặt ra bài toán nổi tiếng giả thuyết Poincaré trong toán học. Khi nghiên cứu về bài toán ba vật thể, ông là người đầu tiên khám phá ra Hệ có tính tất định hỗn độn, sau này là cơ sở cho lý thuyết hỗn độn hiện đại (Chaos Theory). Ông được coi là một trong những cha đẻ của tô pô học.

Poincaré đã đưa ra nguyên lý Tương đối hiện đại, và lần đầu tiên ông đã biểu diễn các phép biến đổi Lorentz theo dạng đối xứng hiện đại của chúng. Poincaré đã phát hiện ra các phép biến đổi vận tốc vẫn còn đúng trong phạm vi tương đối tính, và đã gửi điều này trong một lá thư tới Hendrik Lorentz vào năm 1905. Dựa vào điều này, ông đã rút ra được tính bất biến của các phương trình Maxwell trong lý thuyết tương đối đặc biệt - một bước quan trọng trong việc xây dựng lý thuyết này.

Nhóm Poincaré sử dụng trong toán học và vật lý được đặt theo tên của ông.

Poincaré sinh tại Cité Ducale gần Nancy, Meurthe-et-Moselle trong một gia đình có ảnh hưởng (Belliver,1956). Bố ông là Leon Poincaré (1828–1892) là giáo sư về y học tại Đại học Nancy. Người em gái của ông Aline lấy nhà triết học duy tâm Emile Boutroux.Một thành viên nổi tiếng khác trong dòng họ là Raymond Poincaré - là thủ tướng và tổng thống Pháp từ 1913 đến 1920 và là thành viên của Viện Hàn lâm Pháp.

Giáo dục

Thời thơ ấu ông bị một lần ốm nặng do bệnh bạch hầu và nhận được sự chăm sóc chu đáo của mẹ ông, bà Eugénie Launois (1830–1897).

Vào năm 1862 Henri học tại trường Lycée ở Nancy (bây giờ được đổi tên thành Lycée Henri Poincaré để tưởng niệm ông, thuộc về trường đại học Nancy). Ông học mười một năm tại Lycée và trong suốt thời gian này ông luôn đứng đầu trường trong những môn ông được học. Ông rất giỏi viết văn. Giáo viên toán coi ông như là "quái vật của Toán học" và ông đã giành giải nhất trong cuộc thi học sinh giỏi của nước Pháp. Những môn học kém nhất của ông là âm nhạc và thể dục - ông được đánh giá là trung bình khá (O'Connor et al., 2002). Ông tốt nghiệp trường Lycée năm 1871 với tấm bằng cử nhân văn chương và khoa học.

Ông và bố ông phục vụ trong đơn vị cứu thương trong những năm 1870 khi nổ ra chiến tranh Pháp-Phổ.

Poincaré thi đỗ vào trường đại học bách khoa (École Polytechnique) năm 1873. Tại đây ông học toán dưới sự hướng dẫn của Charles Hermite, tiếp tục phát triển tài năng toán học của mình và viết bài báo đầu tiên (Démonstration nouvelle des propriétés de l'indicatrice d'une surface) vào năm 1874. Ông tốt nghiệp năm 1875 hoặc 1876. Ông nghiên cứu và học tiếp toán học tài trường Mỏ (École des Mines) và tốt nghiệp kỹ sư mỏ vào tháng 3 năm 1879.

Khi học tại trường Mỏ (École des Mines) ông tham gia vào Corps of Mines (Ủy ban về mỏ) với vị trí là thanh tra tại vùng Vesoul miền đông bắc nước Pháp. Vào tháng 8 năm 1879 đã xảy ra một vụ tai nạn tại mỏ Magny làm 18 công nhân mỏ bị chết. Ông đã khảo sát chi tiết các nguyên nhân khách quan và chủ quan.

Cũng tại thời điểm này, Poincaré đang chuẩn bị làm luận án Tiến sĩ về khoa học toán học dưới sự hướng dẫn của Charles Hermite. Luận án của ông trong lĩnh vực phương trình vi phân, dưới tiêu đề Sur les propriétés des fonctions définies par les équations différences (Về các tính chất của các hàm số xác định bằng phương trình vi phân). Poincaré đã đưa ra một hướng mới trong việc nghiên cứu tính chất của các phương trình này. Ông không chỉ đối mặt với vấn đề xác định tính khả tích của các phương trình vi phân, mà còn là người đầu tiên nghiên cứu các tính chất hình học tổng quát của chúng. Ông nhận ra chúng có thể được sử dụng để mô hình hóa tương tác giữa các vật thể chuyển động trong hệ Mặt Trời. Poincaré tốt nghiệp đại học Paris năm 1879.

nhỏ|Henri Poincaré thời trẻ

Sự nghiệp

Sau đó, ông được nhận vào đại học Caen với vị trí là trợ giảng toán học. Nhưng ông cũng không từ bỏ hoàn toàn nghề mỏ. Ông làm kỹ sư tại Bộ dịch vụ công cộng với nhiệm vụ là phát triển tuyến đường sắt miền bắc từ 1881 đến 1885. Sau đó ông trở thành kỹ sư trưởng tại Corps de Mines vào năm 1893 và tổng thanh tra năm 1910.

Đầu năm 1881 cho đến cuối sự nghiệp của mình, ông dạy tại đại học Paris (Paris-Sorbonne).Ban đầu ông được bổ nhiệm làm maître de conférences d'analyse (Trợ lý giáo sư về giải tích (Sageret, 1911).Cuối cùng ông giữ chức trưởng phòng các phòng Vật lý và Cơ học thực nghiệm, Toán lý và lý thuyết xác suất, Thiên văn và Cơ học thiên thể.

Cũng trong năm 1881 Poincaré cưới Poulain d'Andecy. Họ có bốn con: Jeanne (sinh 1887), Yvonne (1889), Henriette (1891) và Léon (1893).

Vào năm 1887, ở tuổi 32, Poincaré được bầu vào Viện Hàn lâm khoa học Pháp (Académie des sciences). Ông trở thành chủ tịch năm 1906 và được bầu vào Viện Hàn lâm Pháp vào năm 1909.

Năm 1887 ông đoạt giải Oscar II, một cuộc thi do vua Thụy Điển tổ chức nhằm tìm lời giải cho bài toán ba vật thể liên quan đến các vật thể chuyển động tự do trên quỹ đạo.(Xem bài toán ba vật thể phía dưới)

Năm 1893 Poincaré tham gia vào viện Bureau des Longitudes (Nha Vĩ độ) với việc đồng bộ hóa thời gian trên toàn thế giới.

Năm 1912 Poincaré phải phẫu thuật tuyến tiền liệt và hậu quả là ông bị chết do tắc mạch máu vào ngày 17 tháng 7 năm 1912 tại Paris, lúc ông 58 tuổi. Ông được chôn cất tại hầm mộ của gia đình ở nghĩa trang Montparnasse, Paris.

Vào năm 2004, Claude Allègre, cựu bộ trưởng giáo dục Pháp, đã đề nghị Poincaré được chôn cất tại điện Panthéon ở Paris, nơi an táng của những người có cống hiến lớn cho nước Pháp.

Học trò

Poincaré có hai nghiên cứu sinh tiêu biểu tại đại học Paris là Louis Bachelier (1900) and Dimitrie Pompeiu (1905).

Công việc nghiên cứu

Tóm tắt

Poincaré có nhiều đóng góp cho cả Toán học thuần túy lẫn toán học ứng dung như: cơ học thiên thể, cơ học chất lưu,quang học, điện học, điện báo, lực đàn hồi,nhiệt động học, cơ học lượng tử, lý thuyết tương đối và vũ trụ học.

Ông cũng là người viết một số sách phổ biến kiến thức về toán học và vật lý cho công chúng.

Các đóng ghóp chủ yếu của ông trong một số chủ đề: Tô pô đại số Lý thuyết hàm giải tích của một số biến phức Lý thuyết các hàm Abel Hình học đại số Poincaré đặt ra bài toán nổi tiếng trong toán học: Giả thuyết Poincaré, một bài toán của tô pô học Định lý đệ quy Poincaré Hình học hyperbol Lý thuyết số Bài toán ba vật thể Lý thuyết phương trình Diophantine Lý thuyết điện từ Thuyết tương đối đặc biệt Trong một bài báo năm 1894, ông đưa ra khái niệm Nhóm cơ sở Trong lĩnh vực phương trình vi phân, Poincaré đã đưa ra các khái niệm mặt cấu Poincaré, ánh xạ Poincaré. *Ông viết một bài báo chứng minh một tham số quan trọng trong cơ học lượng tử.

Bài toán ba vật thể

Vấn đề tìm lời giải tổng quát cho n (n>2)vật thể chuyển động trên quỹ đạo trong hệ mặt trời đã được đặt ra từ thời đại của Isaac Newton. Ban đầu là bài toán đối với ba vật thể, sau đó được tổng quát lên cho n. Lời giải bài toán n - vật thể được xem là rất quan trọng và là thử thách đối với các nhà toán học cuối thế kỷ 19. Vào năm 1887, để kỷ niệm lần sinh nhật thứ 60 của mình, nhà vua Thụy Điển Oscar II cùng với sự trợ giúp của Gösta Mittag-Leffler, đã lập một giải thưởng cho người nào giải được bài toán. Nội dung của lời công bố khá rõ ràng:

:"Cho một hệ bất kỳ các khối lượng điểm mà chúng hút nhau tuân theo các định luật Newton, với giả sử không có hai điểm nào va vào nhau, hãy tìm (biểu diễn) các tọa độ của mỗi điểm như là một chuỗi theo một biến (hàm của thời gian) và các chuỗi này hội tụ đều."

Trong trường hợp không giải được, bất kì một đóng ghóp quan trọng cho cơ học cổ điển thì đều được trao giải. Giải thưởng cuối cùng đã trao cho Poincaré, mặc dù ông không hề giải bài toán gốc. Một thành viên xét duyệt, giáo sư Karl Weierstrass nói rằng: "Mặc dù lời giải đưa ra không cung cấp một lời giải đầy đủ cho bài toán, nhưng cho dù thế nào đi chăng nữa sự phát hành của nó sẽ mở đầu cho một kỷ nguyên mới của lịch sử cơ học thiên thể." (Bản thảo đầu tiên của Poincaré có một số sai sót nghiêm trọng; chi tiết xem bài của Diacu). Bản thảo cuối cùng bao gồm nhiều ý tưởng quan trọng mà dẫn đến lý thuyết hỗn loạn. Bài toán với giả thuyết ban đầu của nó cuối cùng được Karl F. Sundman giải với n = 3 vào năm 1912, và trường hợp tổng quát được Qiudong Wang giải vào năm 1991.

Nghiên cứu về thuyết tương đối

phải|[[Marie Curie và Poincaré trao đổi tại hội nghị Solvay 1911]]

Thời gian địa phương

Công việc của Poincaré tại Bureau des Longitudes về việc xác định các vùng thời gian quốc tế đã dẫn ông đến xem xét việc bằng cách nào mà các đồng hồ được đặt trên mặt đất và đồng hồ trong không gian tuyệt đối di chuyển với các vận tốc tương đối khác nhau được đồng bộ hóa với nhau. Cũng trong thời gian này, nhà vật lý lý thuyết Hendrik Lorentz đang phát triển lý thuyết của Maxwell vào chuyển động của các hạt tích điện(electron hoặc ion), và tương tác của chúng cùng với sự phát xạ. Năm 1895 Lorentz đã đưa ra một đại lượng phụ (mà không có sự giải thích vật lý một cách rõ ràng) gọi là "thời gian địa phương " (hoặc còn gọi là thời gian cục bộ) t^\prime = t-vx^\prime/c^2, với x^\prime = x - vt và đưa ra giả thuyết "sự co độ dài" để giải thích sự thất bại của các thí nghiệm quang học và điện từ để xác định chuyển động tương đối với Ê-te. Xem Thí nghiệm Michelson-Morley. Poincaré là một người diễn giải kiên định(thỉnh thoảng là người bạn phê bình) đối với lý thuyết của Lorentz. Với vai trò là nhà triết học, ông cũng thích thú khi tìm "hiểu ý nghĩa sâu xa" của lý thuyết này. Ông đã đi đến các bản chất của lý thuyết Lorentz và bây giờ được coi như là một phần của thuyết Tương đối đặc biệt. Trong bài viết 'Đo thời gian' (1898): "Một chút suy nghĩ cũng đủ để hiểu rằng tất cả những khẳng định này tự chúng không có ý nghĩa. Chúng chỉ có ý nghĩa khi là kết quả của sự quy ước." Ông cũng cho rằng, các nhà khoa học phải đặt vận tốc ánh sáng là một hằng số như là một tiên đề để các lý thuyết vật lý có dạng đơn giản nhất. Dựa trên những điều giả sử này, ông đã thảo luận(1900) về phát minh của Lorentz về thời gian cục bộ và chú ý đến nó xuất hiện trong trường hợp các đồng hồ chuyển động được đồng bộ hóa bằng cách trao đổi tín hiệu ánh sáng được giả sử truyền đi với cùng vận tốc theo cùng các hướng trong một khung di động.

Nguyên lý tương đối và các phép biến đổi Lorentz

Ông nói đến "Nguyên lý của chuyển động tương đối" vào năm 1900 và đặt tên nó là "Nguyên lý tương đối" vào năm 1904, theo đó không có một thí nghiệm vật lý nào có thể phân biệt được giữa trạng thái của chuyển động đều và trạng thái nghỉ. Năm 1905 Poincaré gửi một lá thư cho Lorentz về bài báo của Lorentz năm 1904, mà Poincaré đã miêu tả bài báo có một ý nghĩa tối quan trọng. Trong lá thư này, ông đã chỉ ra một lỗi của Lorentz khi ông áp dụng các phép biến đổi của ông cho các phương trình Maxwell đối với các hạt tích điện, ngoài ra cũng đề cập tới hệ số giãn thời gian của Lorentz. Trong một lá thư thứ hai, Poincaré đưa ra lý do vì sao hệ số giãn thời gian quả thực là đúng: Sự cần thiết để dạng các phép biến đổi tạo thành một nhóm và đặt cho nó cái tên như bây giờ được biết đến là định luật cộng vận tốc tương đối tính. Poincaré đã đọc một báo cáo tại cuộc họp của viện Hàn lâm khoa học tại Paris vào ngày 5 tháng 6 năm 1905 mà cũng có những vấn đề trên. Trong bản in của bài báo cáo ông viết :

và chỉ ra rằng một hàm bất kỳ \ell\left(\varepsilon\right) phải bằng đơn vị đối với mọi \varepsilon (Lorentz đã đặt \ell = 1 bởi một tham số khác) để làm cho dạng các phép biến đổi trở thành một nhóm. Trong một bài báo mở rộng xuất hiện năm 1906 Poincaré đã chỉ ra rằng x^2+ y^2+ z^2- c^2t^2 là một bất biến. Ông cũng chú ý rằng các phép biến đổi Lorentz chỉ là một phép quay trong không gian bốn chiều quanh gốc bằng cách đưa ra ct\sqrt{-1} như là một tọa độ tưởng tượng thứ tư, và ban đầu ông sử dụng như là dạng 4-vector. Những nỗ lực của Poincaré về thiết lập cơ học trong không gian bốn chiều đã bị ông từ bỏ vào năm 1907, bởi vì ý kiến của ông về vật lý chuyển sang ngôn ngữ của hình học bốn chiều cần quá nhiều lỗ lực cho những lợi ích thu được bị hạn chế. Hermann Minkowski đã tiếp tục con đường này vào năm 1907.

Quan hệ khối lượng - năng lượng

Vào năm 1900, Poincaré đã khám phá ra mối quan hệ giữa khối lượng và năng lượng điện từ. Trong khi nghiên cứu sự mâu thuẫn giữa các định luật Newton và lý thuyết của Lorentz, ông đã cố xác định liệu khi trường điện từ được kể đến thì khối tâm có vẫn di chuyển với vận tốc đều hay không. nghịch lý Poincaré mà không cần cơ chế bù trừ của ether. Máy dao động Hertz mất khối lượng trong quá trình phát xạ, và động lượng được bảo toàn trong mọi hệ quy chiếu. Tuy nhiên, đề cập đến cách giải quyết vấn đề tâm hấp dẫn của Poincaré, Einstein cho rằng công thức của Poincaré và của ông từ năm 1906 là tương đương về mặt toán học.

Poincaré và Einstein

Bài báo đầu tiên của Einstein về thuyết tương đối được xuất bản ba tháng sau bài báo ngắn của Poincaré,

Tính cách

Sở thích làm việc của Poincaré đã từng được so sánh là một chú ong bay từ bông hoa này đến bông hoa khác. Poincaré rất thích theo lối suy nghĩ của riêng ông; ông đã nghiên cứu những suy nghĩ của ông và đưa ra những nhận định trong một buổi nói chuyện năm 1908 tại Viện tâm lý học trung ương ở Paris. Trong đó ông liên hệ giữa cách ông suy nghĩ với những khám phá do ông tìm ra.

Nhà toán học Darboux nhận xét ông là típ người thuộc về "trực giác", bởi vì người ta thường thấy ông làm việc với sự hình dung những đối tượng trong nghiên cứu của ông. Ông không quan tâm đến sự phức tạp và sự phi logic. Ông tin rằng không phải là con đường đẻ phát minh nhưng là một cách để tạo nên những ý tưởng và logic hạn chế ý tưởng.

Poincaré cũng hay đãng trí. Một lần ông mời một người bạn đến ăn trưa cùng ông, khi ông này đến thì thấy Poincaré đang đi lại trong phòng làm việc và chìm đắm trong suy nghĩ của mình. Biết bạn hay đãng trí lên ông không gọi mà ngồi ngoài hành lang chờ. Sau khoảng một lúc bỗng nhiên Poincaré từ trong phòng nói to ra: "Thưa ngài, ngài đang làm phiền tôi đấy!"

Chú thích và Tham khảo

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
** Jules Henri Poincaré ** (29 tháng 4 năm 1854 – 17 tháng 6 năm 1912) là một nhà toán học, nhà vật lý lý thuyết, và là một triết gia người Pháp. Ông là
nhỏ|Trong một 2-mặt cầu thông thường, bất kì một vòng kín nào có thể thu nhỏ một cách liên tục thành một điểm trên mặt cầu. Liệu điều kiện này có đặc trưng cho 2-mặt
nhỏ|243x243px|Henri Poincaré **Nhóm Poincaré**, được đặt theo tên Henri Poincaré (1905), lần đầu tiên được Hermann Minkowski (1908) định nghĩa là nhóm đẳng cự của không gian Minkowski. Đây là một nhóm Lie không giao
**Raymond Poincaré** (2 tháng 8 năm 1860 — 15 tháng 10 năm 1934) là một chính khách Pháp. Ông đã giữ chức thủ tướng Pháp trong 3 lần khác nhau, ông là tổng thống Đệ
**2021 Poincaré** là một tiểu hành tinh vành đai chính được phát hiện bởi nhà thiên văn học Louis Boyer người Pháp ngày 26 tháng 6 năm 1936 ở Algiers. Tiểu hành tinh được đặt
**Giải thưởng Henri Poincaré** được tài trợ bởi Quỹ Daniel Iagolnitzer, thành lập năm 1997 nhằm công nhận những đóng góp nổi bật trong ngành Vật lý Toán và những đóng góp về những sự
**Lịch sử của thuyết tương đối hẹp** bao gồm rất nhiều kết quả lý thuyết và thực nghiệm do nhiều nhà bác học khám phá như Albert Abraham Michelson, Hendrik Lorentz, Henri Poincaré và nhiều
**Grigori Yakovlevich Perelman** (, sinh ngày 13 tháng 6 năm 1966), đôi khi còn được biết đến với tên **Grisha Perelman**, là một nhà toán học người Nga có nhiều đóng góp đến hình học
**Lorraine** (tiếng Đức: **Lothringen**) từng là một vùng của nước Pháp, bao gồm bốn tỉnh: Meurthe-et-Moselle, Meuse, Moselle và Vosges (theo quan điểm lịch sử, tỉnh Haute-Marne cũng nằm trong vùng), bao gồm 2.337 xã.
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
**Georg Ferdinand Ludwig Philipp Cantor** (;  – 6 tháng 1 năm 1918) là một nhà toán học người Đức, được biết đến nhiều nhất với tư cách cha đẻ của lý thuyết tập hợp, một
**Josiah Willard Gibbs** (11 tháng 2 năm 1839 - 28 tháng 4 năm 1903) là một nhà khoa học người Mỹ đã có những đóng góp lý thuyết đáng kể cho vật lý, hóa học
thumb|Nhà nguyện Chính tòa Sorbonne **Đại học Sorbonne** (, ) là một trường đại học công lập ở Paris, Pháp. Đại học Sorbonne là một trong những cơ sở đào tạo bậc đại học và
**Cédric Villani** (sinh 5 tháng 10 năm 1973), là nhà toán học người Pháp. Villani học tại Trường École normale supérieure trước khi lấy bằng Tiến sĩ năm 1998 dưới sự hướng dẫn của Pierre-Louis
**Louis-Victor-Pierre-Raymond**, đời thứ 7 trong dòng họ [https://en.wikipedia.org/wiki/House_of_Broglie Duc De Broglie], (; ; 15, Tháng 8, 1892 – 19, Tháng 3, 1987)là một nhà Vật lý người Pháp có những đóng góp đột phá trong
**Louis Couturat** (; sinh ngày 17 tháng 1 năm 1868 - mất ngày 3 tháng 8 năm 1914) nhà lôgic học, nhà toán học, nhà triết học, và là nhà ngôn ngữ học người Pháp.
**Nghĩa trang Montparnasse** ở Paris là nơi chôn cất rất nhiều nhân vật nổi tiếng của Pháp cũng như trên thế giới, danh sách sau đây có thể chưa đầy đủ: nhỏ|phải|Mộ chung của [[Simone
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
**Tốc độ ánh sáng** trong chân không, ký hiệu là , là một hằng số vật lý cơ bản quan trọng trong nhiều lĩnh vực vật lý. Nó có giá trị chính xác bằng 299.792.458 m/s
Trong vật lý học, **thuyết tương đối hẹp** (**SR**, hay còn gọi là **thuyết tương đối đặc biệt** hoặc **STR**) là một lý thuyết vật lý đã được xác nhận bằng thực nghiệm và chấp
nhỏ|Dưới con mắt tôpô học, cái cốc và cái vòng là một **Tô pô** hay **tô pô học** có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm _topos_ (nghĩa là
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Trong vật lý học, **phép biến đổi Lorentz** (hoặc **biến đổi Lorentz**) đặt theo tên của nhà vật lý học người Hà Lan Hendrik Lorentz là kết quả thu được của Lorentz và những người
nhỏ|phải|Các sĩ quan của trường Polytechnique hướng ra mặt trận bảo vệ Paris chống ngoại xâm năm 1814. Bức tượng được đặt tại khu vực vinh danh của trường để kỉ niệm sự kiện này
Dưới đây là danh sách các nhà vật lý nổi tiếng. __NOTOC__ ## A * Ernst Abbe - Đức (1840-1905) * Hannes Alfvén - Thụy Điển (1908-1995) * Luis Alvarez - Hoa Kỳ (1911-1988) *
Đây là danh sách các nhà toán học nổi tiếng xếp theo thứ tự bảng chữ cái Latinh của chữ cái đầu tiên của họ. ## A 188x188px|Archimedes|thế=|phải|không_khung * Niels Henrik Abel - Na Uy
nhỏ|phải|Logo của ban tổ chức cuộc thi IMO (International Mathematical Olympiad) **Olympic Toán học Quốc tế** (tiếng Anh: _International Mathematical Olympiad_, thường được viết tắt là **IMO**) là một kì thi Toán học cấp quốc
Trong toán học, **số quay** là một bất biến gắn với một phép đồng phôi của đường tròn. ## Định nghĩa Giả sử _f_: _S_ 1 → _S_ 1 là một phép đồng phôi bảo
Bảng khắc trên cổng vào của Sorbonne Mặt trước của tòa nhà Sorbonne Building Sorbonne Place Danh tự **Sorbonne** (_La Sorbonne_) thông thường được dùng để chỉ Đại học Paris hay một trong các đại
**Nancy** là tỉnh lỵ của tỉnh Meurthe-et-Moselle, thuộc vùng Grand Est của nước Pháp, có dân số là 105.830 người (thời điểm 2002). ## Khí hậu Nancy có khí hậu đại dương (phân loại khí
nhỏ|Nghĩa trang Montparnasse nhìn từ sảnh trên [[tháp Montparnasse]] **Nghĩa trang Montparnasse** (tiếng Pháp: _Cimetière du Montparnasse_) là một trong các nghĩa trang lớn và nổi tiếng của Paris. ## Lịch sử Ban đầu, tại
**Huy chương Bruce** tên đầy đủ là **Huy chương vàng Catherine Wolfe Bruce** (tiếng Anh: _Catherine Wolfe Bruce Gold Medal_) là một phần thưởng của Hội Thiên văn học Thái Bình Dương (_Astronomical Society of
**Huy chương vàng của Hội Thiên văn học Hoàng gia** là phần thưởng cao nhất của Hội Thiên văn Hoàng gia. ## Lịch sử Huy chương này được lập ra từ năm 1824. Trong các
**Huy chương Matteucci** là một giải thưởng của "Hội Khoa học Ý" dành cho các nhà vật lý có những đóng góp cơ bản cho Vật lý học. Theo sắc lệnh hoàng gia Ý ngày
**Charles Hermite** () (24 tháng 12 năm 1822 – 14 tháng 1 năm 1901) là nhà toán học người Pháp nghiên cứu về lý thuyết số, dạng toàn phương, lý thuyết bất biến, đa thức
Sự phát triển của Toán học cả về mặt tổng thể lẫn các bài toán riêng lẻ là một chủ đề được bàn luận rộng rãi - nhiều dự đoán trong quá khứ về toán
Triều lên (nước lớn) và triều xuống (nước ròng) tại [[vịnh Fundy.]] **Thủy triều** là hiện tượng nước biển, nước sông... lên xuống trong một chu kỳ thời gian phụ thuộc biến chuyển thiên văn.
Những viên gạch đầu tiên của bộ môn cơ học dường như được xây nền từ thời Hy Lạp cổ đại. Những kết quả nghiên cứu đầu tiên được ngày nay biết đến là của
:_Bài này nói về một khái niệm vật lý lý thuyết. Xem các nghĩa khác của Ête tại Ête (định hướng)_ **Ête** là một khái niệm thuộc vật lý học đã từng được coi như
Thí nghiệm của [[James Prescott Joule, năm 1843, để phát hiện sự chuyển hóa năng lượng từ dạng này (cơ năng) sang dạng khác (nhiệt năng)]] Trong vật lý và hóa học, **định luật bảo
phải|nhỏ|Các số tự nhiên dùng để đếm (một quả táo, hai quả táo, ba quả táo....). Trong toán học, các **số tự nhiên** được sử dụng để đếm (như trong "có _sáu_ đồng xu trên
nhỏ|Một [[trò đùa toán học thường được nhắc đến là các nhà topo học không thể biết cái cốc uống và cái donut có khác nhau không, do một cái donut có thể được biến
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
**Ngô Bảo Châu** (sinh ngày 28 tháng 6 năm 1972), giáo sư tại Khoa Toán, Đại học Chicago, là một nhà toán học Pháp-Việt nổi tiếng với chứng minh bổ đề cơ bản cho các
thumb|Hình vẽ minh họa cho phát biểu gốc của Euclid về tiên đề song song. Trong hình học, **định đề song song** (tiếng Anh: _parallel postulate_) hay **định đề thứ năm của Euclid** do là
**Giải Bolyai** (tên đầy đủ của tiếng Hungary: _Bolyai János Nemzetközi Matematikai Díj_ = Giải Toán học quốc tế Bolyai János) là một giải toán học quốc tế, do Viện Hàn lâm Khoa học Hungary
**Michel Loève** (22.1.1907 tại Jaffa, Palestine – 17.2.1979 tại Berkeley, California, Hoa Kỳ) là nhà lý thuyết xác suất và nhà thống kê toán học. Ông nổi tiếng về định lý Karhunen-Loève. ## Cuộc đời
Cơ ngơi của Hội Vương thất Luân Đôn hiện nay, 6–9 [[Carlton House Terrace, London (một trong bốn tài sản thuộc Hội).]] ** Hội Vương thất Luân Đôn ** (), trụ sở đặt tại 6-9
**Đại học Nancy** tổ chức thành liên đoàn ba học viện giáo dục đại học chính của Nancy, vùng Lorraine, Pháp. * **Đại học Henri Poincaré** (UHP, cũng gọi là Nancy 1): khoa học tự
**Maksim Lvovich Kontsevich** () (sinh ngày 25 tháng 8 năm 1964) là một nhà toán học người Nga nghiên cứu về lý thuyết nút, lý thuyết trường lượng tử. Ông được trao huy chương Fields