✨Định lý lá cờ Anh

Định lý lá cờ Anh

thumb|Định lý Lá Cờ Nước Anh phát biểu rằng tổng diện tích hình vuông màu đỏ bằng tổng diện tích hình vuông màu xanh Trong hình học Euclid, định lý Lá Cờ Nước Anh phát biểu rằng cho một điểm P trên mặt phẳng hình chữ nhật ABCD khi đó tổng diện tích hai hình vuông với độ dài cạnh lần lượt là khoảng cách từ điểm P đến hai đỉnh đối nhau bằng tổng diện tích hai hình vuông với các cạnh lần lượt là khoảng cách từ điểm P đến hai đỉnh đối còn lại.

Định lý được thể hiện thông qua Phương trình sau:

: AP^{2}+CP^{2}=BP^{2}+DP^{2}.\,

Định lý cũng đúng nếu điểm P nằm trong không gian Euclid chứa hình chữ nhật.. Tuy nhiên định lý không còn đúng nếu như ta thay hình chữ nhật bởi một hình bình hành.

Chứng minh

thumb|Minh hoạ cách chứng minh Hình chiếu của P tới các cạnh AB, BC, CD, và AD lần lượt là các điểm w, x, yz. Khi đó wxyz là một tứ giác có hai đường chéo vuông góc

Áp dụng định lý Pytago cho tam giác vuông AwP, và ta thấy wP = Az, do đó

  • AP^{2} = Aw^{2} + wP^{2} = Aw^{2} + Az^{2} tương tự ta có:
  • PC^{2} = wB^{2} + zD^{2},
  • BP^{2} = wB^{2} + Az^{2},
  • PD^{2} = zD^{2} + Aw^{2}. Do đó: AP^{2} + PC^{2} = (Aw^{2} + Az^{2}) + (wB^{2} + zD^{2}) = (wB^{2} + Az^{2}) + (zD^{2} + Aw^{2}) = BP^{2} + PD^{2} ## Ứng dụng thumb|Tổng diện tích các tứ giác cùng màu bằng nhau Một ứng dụng định lý là cờ nước anh như sau: _Cho hai đa giác đều 2n cạnh là A1A2....A2n và B1B2....B2n khi đó tổng diện tích của hai tứ giác AiAi+1Bi+1Bi và Ai+nAi+1+nBi+1+nBi+n là bằng nhau với mọi i=1,...,n_. Kết quả này được chứng minh từ trường hợp hai hình chữ nhật đồng dạng.

Mở rộng

Cho hai hình chữ nhật đồng dạng cùng hướng ABCD và A'B'C'D' khi đó ta có hệ thức:

AA^2+CC^2=BB^2+DD^2

Rõ ràng khi một trong hai hình chữ nhật suy biến thành một điểm thì sẽ có định lý Lá Cờ Anh.

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
thumb|Định lý Lá Cờ Nước Anh phát biểu rằng tổng diện tích hình vuông màu đỏ bằng tổng diện tích hình vuông màu xanh Trong hình học Euclid, **định lý Lá Cờ Nước Anh** phát
Trong toán học, cụ thể hơn là trong đại số trừu tượng, **các định lý đẳng cấu** (hay còn được biết với tên **các định lý đẳng cấu của Noether**) là các định lý mô
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
**Định lý bất biến miền **(Invariance of domain) còn có tên gọi là **Định lý Brouwer về tính bất biến của miền** (domain), được chứng minh bởi nhà toán học Luitzen Egbertus Jan Brouwer (1881-1966)
thumb|Trong hình vẽ cho chín điểm, một trường hợp đặc biệt, khi cả hai đường bậc ba và suy biến thành ba đường thằng **Định lý Cayley–Bacharach** là một định lý toán học nói về
Trong toán học, **định lý** **Borsuk-Ulam** khẳng định rằng tất cả các hàm liên tục từ một hình cầu _n_ chiều vào một không gian Euclid _n_ chiều sẽ gửi ít nhất một cặp điểm
nhỏ|Định lý Bayes được viết lên bằng đèn neon xanh tại văn phòng của Autonomy ở Cambridge. **Định lý Bayes** (Tiếng Anh: _Bayes theorem_) là một kết quả của lý thuyết xác suất. Nó phản
Trong lý thuyết đồ thị, có hai định lý được gọi là **định lý Dirac** (tiếng Anh: _Dirac's theorem_), cả hai đều được đặt theo tên nhà toán học Gabriel Andrew Dirac: :1. Cho _G_
thumb|300 px|right|Với mọi hàm số liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm c \in (a,b) sao cho đường thẳng nối hai điểm (a,f(a))(b,f(b)) song song với tiếp
**Các định lý bất toàn của Gödel**, hay gọi chính xác là **Các định lý về tính bất hoàn chỉnh của Gödel** (tiếng Anh: **Gödel's incompleteness theorems**, tiếng Đức: **Gödelscher Unvollständigkeitssatz**), là hai định lý
Trong Lý thuyết thông tin, **Định lý mã hóa trên kênh nhiễu** (_tiếng Anh: noisy-channel coding theorem_) đề xuất rằng, cho dù một kênh truyền thông có bị ô nhiễm bởi nhiễu âm bao nhiêu
Trong toán học, **định lý Green** đưa ra mối liên hệ giữa tích phân đường quanh một đường cong khép kín _C_ và tích phân mặt trên một miền _D_ bao quanh bởi _C_. Đây
thumb|phải|Hình vẽ miêu tả định lý Pompeiu. Trong hình học phẳng, **định lý Pompeiu** (tiếng Anh: _Pompeiu's theorem_) là một hệ quả được tìm ra bởi nhà toán học người România Dimitrie Pompeiu. Nội dung
right|thumb|X(54) là điểm Kosnita của tam giác ABC trong từ điển Kimberling Trong hình học Euclid, **định lý Kosnita** (_tiếng Anh: Kosnita's theorem)_ là định lý nói về sự đồng quy của các đường tròn
Cho X là một không gian chuẩn tắc, lấy F là một tập đóng trong X.Cho f\,:F\longrightarrow R liên tục, khi đó có một ánh xạ liên tục g\,:X\longrightarrow R sao cho
Minh họa của định lý đường cong Jordan. Đường cong Jordan (vẽ bằng màu đen) chia mặt phẳng thành 2 phần: "phần trong" (màu xanh) và "phần ngoài"(màu hồng). **Định lý đường cong Jordan** là
**Định lý Brouwer** được phát biểu năm 1912 bởi nhà luận lý học Hà Lan Luizen Egbertus Jan Brouwer và còn có tên là **Nguyên lý điểm bất động Brouwer**. Đây là một trong những
Trong hình học, **định lý Radon** về các tập hợp lồi, đặt tên theo Johann Radon, khẳng định rằng mọi tập hợp gồm _d_ + 2 điểm trong **R**_d_ đều có thể chia thành hai tập hợp
**Định lý Sylvester–Gallai** khẳng định rằng với mọi tập hợp hữu hạn điểm trên mặt phẳng, hoặc # mọi điểm đều thẳng hàng; hoặc # tồn tại một đường thẳng chứa đúng hai điểm. Giả
Trong toán học, **định lý Carathéodory** có thể là một trong một số định lý của Constantin Carathéodory: * Định lý của Carathéodory (ánh xạ tuân thủ), về việc mở rộng các ánh xạ tuân
phải|nhỏ|Ví dụ về bản đồ bốn màu **Định lý bốn màu** (còn gọi là _định lý bản đồ bốn màu_) phát biểu rằng đối với bất kỳ mặt phẳng nào được chia thành các vùng
Trong hình học, **định lý De Bruijn–Erdős**, chứng minh bởi Nicolaas Govert de Bruijn và Paul Erdős, đưa ra một chặn dưới cho số đường thẳng xác định bởi _n_ điểm trong mặt phẳng xạ
**Định lý năm màu** (còn gọi là _định lý bản đồ năm màu_): Mọi đồ thị phẳng (G) đều có số màu \gamma(G) \le 5 \,. Là một kết quả từ Lý thuyết đồ
Trong toán học và đặc biệt là giải tích thực, **định lý Bolzano-Weierstrass** (tiếng Anh: Bolzano-Weierstrass theorem, đặt theo tên hai nhà toán học là Bernand Bolzano và Karl Weierstrass) là một định lý quan
**Định lý phạm trù Baire** là định lý quan trọng trong topo, trong giải tích hiện đại, định lý mang tên nhà toán học người Pháp René-Louis Baire (1874 - 1932). Định lý có hai
Trong toán học, **định lý cơ bản của số học** (tiếng Anh: Fundamental theorem of arithmetic) hay **định lý phân tích thừa số nguyên tố** (tiếng Anh: Prime factorization theorem) phát biểu rằng mọi số
phải|Bài toán II.8 trong _Arithmetica_ của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670) **Định lý cuối cùng của Fermat** (hay còn gọi là
**Định lý Fermat về số đa giác đều** (tiếng Anh: _Fermat polygonal number theorem_) khẳng định rằng: mỗi số tự nhiên đều có thể biểu diễn thành tổng của không quá _n_ số _n_ giác
Một cung gồm bốn đoạn thẳng với hệ số góc dương trong một tập hợp 17 điểm. Nếu ta xét dãy các tọa độ _y_ của các điểm theo thứ tự tọa độ _x_ tăng
thumb|_Đường thẳng Pascal_ _GHK_ của lục giác nội tiếp một Elip _ABCDEF_. Các cạnh đối diện của một hình lục giác có cùng màu sắc. **Định lý Pascal** (còn được biết đến với tên **định
thumb|Định lý đường tròn Clifford Trong hình học, **định lý đường tròn Clifford**, đặt theo tên nhà hình học người anh William Kingdon Clifford, là một định lý nói về tính chất của giao điểm
**Định lý Gelfond-Schneider** mang tên của nhà toán học người Nga Alexander Osipovich Gelfond (1906-1968) và của nhà toán học Theodor Schneider (1911-1988), hai người cùng độc lập chứng minh trong lý thuyết số định
Trong lý thuyết số, **Định lý Hurwitz**, được đặt tên theo nhà toán học Adolf Hurwitz. Định lý thuộc lĩnh vực xấp xỉ Diophantine (tiếng Anh: Diophantine approximation). Định lý khẳng định rằng với bất
nhỏ|Định lý Morley Trong hình học phẳng, **định lý Morley về góc chia ba** được phát biểu như sau: Các giao điểm của các đường phân ba góc kề nhau lập thành một tam giác
Trong Giải tích, **Định lý kẹp** là một định lý liên quan đến giới hạn của hàm số. Định lý kẹp là một công cụ mang tính kĩ thuật thường dùng trong các phép chứng
thumb|right|upright=1.25|d=|IO| =\sqrt{R (R-2r)} Trong hình học, **định lý Euler** nói về khoảng cách _d_ giữa tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp của một tam giác thể hiện qua công thức
Trong lĩnh vực hình học, **định lý Schooten** là 1 kết quả được tìm ra bởi nhà toán học người Hà Lan Frans van Schooten và là 1 trường hợp suy biến của Định lý
**Chứng minh của Wiles về định lý cuối cùng của Fermat** là chứng minh toán học của nhà toán học người Anh Andrew Wiles về một trường hợp đặc biệt của định lý Module đối
**Các** **định lý về điểm kỳ dị Penrose–Hawking** (sau Roger Penrose và Stephen Hawking) là một tập hợp các kết quả trong thuyết tương đối rộng cố gắng trả lời câu hỏi khi nào trọng
Trong toán học, **định lý Ax-Grothendieck** là một kết quả về tính đơn ánh và tính toàn ánh của các đa thức, chứng minh độc lập bởi James Axe và Alexander Grothendieck. ## Chứng minh
nhỏ | phải | Tổng các kết quả đầu ra khi gieo một con xúc sắc sẽ có xu hướng tuân theo phân phối chuẩn khi số lần gieo xúc sắc tăng lên Trong toán
Trong lý thuyết nhóm, **định lý Lagrange** phát biểu rằng: nếu _H_ là nhóm con của nhóm hữu hạn _G_, thì cấp (số phần tử) của _G_ chia hết cho cấp của _H_. Định lý
thumb|Chân dung [[François Viète]] Trong toán học, **định lý Viète** hay **hệ thức Viète** (tiếng Pháp: _Relations de Viète_) do nhà toán học Pháp François Viète tìm ra, nêu lên mối quan hệ giữa các
Trong đại số trừu tượng, **định lý cơ bản về nhóm cyclic** khẳng định rằng nếu _G_ là một nhóm cyclic cấp _n_ thì mọi nhóm con của _G_ cũng là cyclic. Hơn nữa, cấp
**Lý thuyết phiếm hàm mật độ** (tiếng Anh: _Density Functional Theory_) là một lý thuyết được dùng để mô tả các tính chất của hệ electron trong nguyên tử, phân tử, vật rắn,... trong khuôn
**Chế định ly hôn trong Luật Hôn nhân và Gia đình Việt Nam** là tổng thể các quy phạm pháp luật quy định về việc ly hôn cùng các vấn đề phát sinh như việc
Trong toán học, đặc biệt là trong lĩnh vực lý thuyết nhóm hữu hạn, **định lý Sylow** là một nhóm các định lý được đặt tên theo nhà toán học Na Uy Ludwig Sylow vào
**Định lý của Ribet** (hay **Phỏng đoán Epsilon - Phỏng đoán ε**, tiếng Anh: **Ribet's theorem**) là một phần của lý thuyết số. Nó đề cập tới đến các thuộc tính của các biểu diễn
Ngày 28 tháng 8 năm 2019, Nghị viện Vương quốc Anh đã bị đình chỉ bởi Nữ hoàng Elizabeth II, theo đề nghị của thành viên đảng Bảo thủ đương kim Thủ tướng Vương quốc
**Lá cờ** **Hawaii** () từng là quốc kỳ của Vương quốc Hawaii vào đầu thế kỷ 19 và tiếp nay là lá cờ của Tiểu bang Hawaii. Đây là lá cờ tiểu bang trực thuộc