✨Không gian Euclid

Không gian Euclid

Mọi điểm trong không gian Euclid ba chiều biểu hiện trong hệ quy chiếu [[Hệ tọa độ Descartes|Descartes]]

Khoảng 300 năm TCN, nhà toán học Hy Lạp cổ đại Euclid đã tiến hành nghiên cứu các quan hệ về khoảng cách và góc, trước hết trong mặt phẳng và sau đó là trong không gian. Một trong các ví dụ về các quan hệ hai loại này là: tổng các góc trong một tam giác là 180 độ. Ngày nay các quan hệ này được biết dưới tên gọi là hình học Euclid hai hoặc ba chiều.

Trong ngôn ngữ của toán học hiện đại, khoảng cách và góc đã được tổng quát cho các không gian 4 chiều, 5 chiều và nhiều chiều hơn. Một không gian n-chiều với các khái niệm về khoảng cách và góc thỏa mãn các quan hệ Euclid được gọi là không gian Euclid n chiều.

Một tính chất quan trọng của không gian Euclide là "tính phẳng". Trong hình học còn có các không gian khác được gọi là không gian phi Euclid. Chẳng hạn, mặt cầu là không gian phi Euclid; một tam giác trên mặt cầu có tổng các góc trong là lớn hơn 180 độ. Trên thực tế, chỉ có một không gian Euclid ứng với một số chiều, trong khi có thể có nhiều không gian phi Euclid có cùng số chiều. Thông thường các không gian này được xây dựng bằng cách là biến dạng không gian Euclid.

Hình tượng trực giác

Một mặt ta hình dung mặt phẳng Euclide là một tập hợp các điểm quan hệ với nhau một cách vững chắc thông qua các biểu thức giữa các khoảng cách và các góc. Cơ bản có hai phép biến đổi quan trọng trên mặt phẳng. Một là phép tịnh tiến, nghĩa là phép di chuyển các điểm của mặt phẳng theo cùng một hướng và một khoảng cách như nhau. Phép biến đổi kia là phép quay quanh một điểm cố định trên mặt phẳng, trong đó mọi điểm trên mặt phẳng quay theo một điểm cố định các góc như nhau. Một trong các tư tưởng chính của hình học Euclide là hai hình (nghĩa là các tập con) của mặt phẳng được xem là bằng nhau nếu có thể di chuyển hình này vào trong hình kia nhờ một số phép tịnh tiến, phép quay và ngược lại. (Xem Nhóm Euclide.)

Mặt khác, cần tiến hành các khảo sát tỷ mỉ về toán học, định nghĩa rõ ràng các khái niệm khoảng cách, góc, phép tịnh tiến, phép quay. Con đường chuẩn tắc để làm việc này là phương pháp tiên đề, đó là định nghĩa mặt phẳng Euclide như một không gian vectơ thực hai chiều với tích vô hướng. Khi đó:

  • các vectơ trong không gian vectơ tương ứng với các điểm của mặt phẳng Euclide,
  • phép cộng trong không gian vectơ tương ứng với phép tịnh tiến, còn
  • tích vô hướng dẫn xuất tới các khái niệm về khoảng cách và góc, chúng lại được dùng để định nghĩa phép quay. Xây dựng mặt phẳng Euclide theo cách này có thể dễ dàng mở rộng cho không gian với số chiều tùy ý. Phần lớn các thuật ngữ, công thức và tính toán sẽ không gặp khó khăn gì với số chiều nhiều hơn. (Tuy nhiên, có thể gặp khó khăn đôi chút đối với phép quay trong không gian với số chiều nhiều hơn.)

Không gian các tọa độ thực

Giả sử R là ký hiệu của trường các số thực. Với mỗi số nguyên không âm n, không gian của các bộ n số thực tạo thành một không gian vectơ n chiều trên R, ký hiệu là Rn và thường được gọi là không gian các tọa độ thực. Một phần tử của Rn được viết là

:\mathbf{x} = (x_1, x_2, \ldots, x_n),

trong đó mỗi xi là một số thực. Các phép toán của không gian vectơ trên Rn được định nghĩa bởi

:\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n),

:a\,\mathbf{x} = (a x_1, a x_2, \ldots, a x_n).

Không gian vectơ Rn có một cơ sở chính tắc: :\mathbf{e}_1 = (1, 0, \ldots, 0), :\mathbf{e}_2 = (0, 1, \ldots, 0), :\vdots :\mathbf{e}_n = (0, 0, \ldots, 1). Một vectơ trong Rn có thể được viết dưới dạng :\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i.

Rn là một ví dụ điển hình của không gian vectơ thực n-chiều; mọi không giạn vectơ thực n-chiều V là đẳng cấu với Rn.

Cấu trúc Euclide

Không gian Euclide cần nhiều thứ hơn không gian với tọa độ thực. Để áp dụng hình học Euclide cần có khái niệm khoảng cách giữa hai điểm và góc giữa hai đường hoặc hai vectơ. Một cách tự nhiên ta sử dụng tích vô hướng chính tắc (còn được gọi là tích chấm trên Rn. Tích vô hướng của hai vectơ xy được định nghĩa bởi

:\mathbf{x}\cdot\mathbf{y} = \sum_{i=1}^n x_iy_i = x_1y_1+x_2y_2+\cdots+x_ny_n.

Kết quả là một số thực. Thêm nữa, tích vô hướng của x với chính nó luôn luôn không âm. Tích này dẫn tới định nghĩa "độ dài" của vectơ x như sau

:|\mathbf{x}| = \sqrt{\mathbf{x}\cdot\mathbf{x = \sqrt{\sum_{i=1}^{n}(x_i)^2}.

Hàm độ dài này thỏa mãn tính chất của chuẩn và được gọi là chuẩn Euclide trên Rn.

Góc (không có hướng) θ (0° ≤ θ ≤ 180°) giữa xy được cho bởi :\theta = \cos^{-1}\left(\frac{\mathbf{x}\cdot\mathbf{y{|\mathbf{x}||\mathbf{y}|}\right) trong đó cos−1 là hàm lượng giác ngược arccos.

Cuối cùng, có thể dùng chuẩn để định nghĩa một metric (hay hàm khoảng cách) trên Rn bằng

:d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.

Khoảng cách này được gọi là khoảng cách Euclide. Nó là hình ảnh của định lý Pytago.

Không gian các tọa độ thực cùng với cấu trúc Euclide được gọi là không gian Euclidean và thường được ký hiệu là En. (Nhiều tác giả dùng Rn cho cả không gian Euclide). Cấu trúc Euclide làm cho En trở thành một không gian với tích vô hướng (hơn nữa là một không gian Hilbert), một không gian vectơ định chuẩn, và một không gian metric.

Phép quay của không gian Euclidean được định nghĩa như phép biến đổi tuyến tính T bảo toàn góc và độ dài:

:T\mathbf{x} \cdot T\mathbf{y} = \mathbf{x} \cdot \mathbf{y},

:|T\mathbf{x}| = |\mathbf{x}|.

Theo ngôn ngữ ma trận, phép quay là một ma trận trực giao.

Topo của không gian Euclide

Vì không gian Euclide là một không gian metric nó cũng là một không gian tôpô với tôpô tự nhiên sinh bởi metric. Tôpô trên En được gọi là tô pô Euclide. Một tập là tập mở trong tôpô Euclide nếu và chỉ nếu nó chứa một hình cầu mở bao quanh mỗi điểm của nó. Tôpô Euclide tương đương với một tô pô tích trên Rn như là tích của n bản sao của đường thẳng thực R (với tôpô chính tắc).

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Mọi điểm trong không gian Euclid ba chiều biểu hiện trong hệ quy chiếu [[Hệ tọa độ Descartes|Descartes]] Khoảng 300 năm TCN, nhà toán học Hy Lạp cổ đại Euclid đã tiến hành nghiên cứu
Trong quá trình nghiên cứu toán học và vật lý, nhiều nhà toán học và vật lý đã xây dựng cơ sở và lý thuyết cho toán học nhiều chiều. Sau đây là lý thuyết
Trong toán học, **không gian Hilbert** (Hilbert Space) là một dạng tổng quát hóa của không gian Euclid mà không bị giới hạn về vấn đề hữu hạn chiều. Đó là một không gian có
**Không gian tôpô** là những cấu trúc cho phép người ta hình thức hóa các khái niệm như là sự hội tụ, tính liên thông và tính liên tục. Những dạng thường gặp của **không
**Không gian compact địa phương** X là một không gian tôpô mà mọi phần tử x của X có một lân cận V_x của x chứa trong một tập compact A\subset X. ## Ví dụ
phải|nhỏ|300x300px| Hệ [[Hệ tọa độ Descartes|tọa độ Descartes hai chiều ]] **Không gian hai chiều** là một bối cảnh hình học trong đó hai giá trị (được gọi là tham số) là cần thiết để
nhỏ|300x300px|Biểu diễn hình học của góc giữa hai vectơ, được định nghĩa bởi tích trong. thế=Scalar product spaces, inner product spaces, Hermitian product spaces.|nhỏ|300x300px|Các không gian tích vô hướng trên một trường bất kỳ có
frame|Hình động về chuyển động luân chuyển cơ bản của khối lập phương bốn chiều, được gọi là một [[tesseract. Các tesseract được xoay trong bốn chiều, sau đó được chuyển thành ba chiều, và
Trong tô pô và các ngành có liên quan của toán học, một **không gian Hausdorff,** **không gian** **tách được** hoặc **không gian T2** là một không gian tô pô mà hai điểm khác biệt
Trong toán học, **không gian mêtric** là một tập hợp mà một khái niệm của khoảng cách (được gọi là mêtric) giữa các phần tử của tập hợp đã được định nghĩa. Không gian mêtric
nhỏ|phải|Minh họa [[hệ tọa độ Descartes 3 chiều thuận tay phải sử dụng để tham chiếu vị trí trong không gian.]] **Không gian** là phạm vi ba chiều không biên giới trong đó các vật
phải|Không gian ba chiều [[Hệ tọa độ Descartes với trục _x_ hướng về người quan sát.]] **Không gian ba chiều** là một mô hình hình học có ba (3) thông số (tọa độ, không tính
nhỏ|Hình [[tứ diện, một đối tượng thường gặp trong các bài toán hình học không gian.]] Trong toán học và hình học, **hình học không gian** là một nhánh của hình học nghiên cứu các
Trong toán học, một **không gian tô pô không chiều** (hay còn gọi là **nildimensional**) là một không gian tôpô không chứa chiều nào đối với một trong số vài khái niệm không tương đương
phải|nhỏ|Không gian vectơ là một tập các đối tượng có định hướng (được gọi là các vectơ) có thể co giãn và cộng. Trong toán học, **không gian vectơ** (hay còn gọi là không gian
Trong toán học, **không gian Banach**, đặt theo tên Stefan Banach người nghiên cứu các không gian đó, là một trong những đối tượng trung tâm của nghiên cứu về giải tích hàm. Nhiều không
Khái niệm hội tụ trong toán học có thể được sử dụng trong các không gian Euclid (chẳng hạn xem định nghĩa (_ε_, _δ_) của giới hạn), các không gian metric, ví dụ như
thumb|Bức họa _[[Trường học Athena_ của Raffaello miêu tả các nhà toán học Hy Lạp (có thể là Euclid hoặc Archimedes) đang dùng compa để dựng hình.]] **Hình học Euclid** (còn gọi là **hình học
Giáo trình Hình học vi phần này là một giáo trình về hình học vi phân cổ điển lí thuyết về đường và mặt trong không gian Euclid hai, ba chiều, đồng thời là một
Trong tô pô và các ngành toán học liên quan, **không gian tích** là tích Descartes của một họ không gian tô pô được trang bị một tôpô gọi là **tô pô tích**. Tô pô
Nội dung gồm Chương I Tập hợp và ánh xạ. Chương II Cấu trúc đại số - số phức - đa thức và phân thức hữu tỉ. Chương III Ma trận - định thức -
Nội dung gồm có 1. Tập hợp. Ánh xạ 2. Một số cấu trúc đại số. Số phức 3. Ma trận. Định thức. Hệ phương trình tuyến tính 4. Không gian vecto 5. Ánh xạ
Nội dung gồm có 1. Tập hợp. Ánh xạ 2. Một số cấu trúc đại số. Số phức 3. Ma trận. Định thức. Hệ phương trình tuyến tính 4. Không gian vecto 5. Ánh xạ
Nội dung gồm có 1. Tập hợp. Ánh xạ 2. Một số cấu trúc đại số. Số phức 3. Ma trận. Định thức. Hệ phương trình tuyến tính 4. Không gian vecto 5. Ánh xạ
Toán Cao Cấp Tập 1 Bài Tập Toán Cao Cấp Tập 1 - Đại Số Và Hình Học Giải Tích Nội dung gồm có 1. Tập hợp. Ánh xạ 2. Một số cấu trúc đại
Trong vật lý, **không–thời gian** là một mô hình toán học kết hợp không gian ba chiều và 1 chiều thời gian để trở thành một không gian bốn chiều. Sơ đồ không–thời gian có
Trong toán học, **không gian étalé** là một không gian tôpô dùng để mô tả một bó. ## Định nghĩa (a) Một _không gian Étalé_ trên một không gian tôpô X là một không gian
Trong tô pô, một **không gian xạ ảnh** là một cấu trúc cơ bản cho phép thuần nhất hóa một không gian vectơ, nói cách khác là quên đi các tỷ lệ để chỉ xem
nhỏ|upright=1.35|Áp dụng định lý Pythagoras để tính khoảng cách Euclid trong mặt phẳng Trong toán học, **khoảng cách Euclid** () giữa hai điểm trong không gian Euclid là độ dài của đoạn thẳng nối hai
**Hình học phi Euclid** là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất một trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những công trình
phải|khung|Một số lĩnh vực. \|\boldsymbol{x}\|_2 là chuẩn cho [[không gian Euclide, thảo luận trong phần đầu tiên bên dưới.]] Trong toán học, một **đơn vị cầu** là các tập hợp của các điểm có **khoảng
Bìa trước của bản dịch tiếng Anh đầu tiên của [[:en:Henry_Billingsley|Henry Billingsley năm 1570]] Euclid **Cơ sở** (tiếng Anh: Elements, tiếng Hy Lạp cổ: Στοιχεῖα) là một tác phẩm chính luận Toán học, gồm có
thumb|upright=1.6| Điều kiện để một tập là compact trong không gian Euclid được phát biểu thông qua [[định lý Heine-Borel, không compact bởi vì nó không bị chặn (mặc dù là tập đóng), dù bị
Trong tô pô và hình học, **orbifold** tổng quát hóa khái niệm đa tạp. Nói một cách gần đúng, một orbifold là một không gian tô pô mà mỗi điểm có lân cận đồng phôi
Hình chỏm cầu màu xanh và mặt cắt. Trong hình học không gian, **hình chỏm cầu**, **hình vòm cầu**, hay **hình đới cầu có một đáy** là một phần của hình cầu bị chia bởi
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
thumb|Hình vẽ minh họa cho phát biểu gốc của Euclid về tiên đề song song. Trong hình học, **định đề song song** (tiếng Anh: _parallel postulate_) hay **định đề thứ năm của Euclid** do là
**Euclid** (tiếng Hy Lạp: Εὐκλείδης Eukleidēs, phiên âm tiếng Việt: **Ơclít**), đôi khi còn được biết đến với tên gọi **Euclid thành Alexandria**, là nhà toán học lỗi lạc thời cổ Hy Lạp, sống vào
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
**Siêu phẳng** của không gian n chiều là một không gian con n-1 chiều của nó. Một siêu phẳng trong không gian Euclid tách không gian đó thành hai nửa không gian. Ví dụ, trong
Trong vật lý, một **lỗ sâu** (tiếng Anh: _wormhole_), **lỗ giun**, hay **Cầu Einstein-Rosen** là một không-thời gian được giả định là có cấu trúc tô pô đặc biệt tạo nên đường đi tắt trong
Trong Toán học, Vật lí và kĩ thuật, **vectơ** hay **hướng lượng** (theo phiên âm Hán Việt) (tiếng Anh: _vector_) là một đoạn thẳng có hướng. Đoạn thẳng này biểu thị phương, chiều và độ
thumb|Định lý Lá Cờ Nước Anh phát biểu rằng tổng diện tích hình vuông màu đỏ bằng tổng diện tích hình vuông màu xanh Trong hình học Euclid, **định lý Lá Cờ Nước Anh** phát
Một ví dụ về tính tương đẳng. Hai hình bên trái là tương đẳng với nhau trong khi hình thứ ba là [[Đồng dạng (hình học)|đồng dạng với hai hình đầu. Hình cuối cùng thì
nhỏ|Tập **A** là liên thông, còn **B** không **Tập hợp liên thông** là tập hợp không thể biểu diễn dưới dạng hợp của hai tập hợp mở không rỗng rời nhau. Một không gian tôpô
nhỏ|phải|Chai Klein nhỏ|phải|[[Felix Klein (1849 - 1925)]] Trong toán học, **chai Klein** (hay **bình Klein**) là một ví dụ cho **mặt không định hướng**, nói cách khác, đó là một bề mặt (một **đa tạp**
Trong hình học, một **khối đa diện đều** là một khối đa diện có tất cả các mặt là các đa giác đều bằng nhau và các cạnh bằng nhau. Đa diện đều được chia
Hình **đa diện** gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện: a) Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một
nhỏ|Bao lồi của tập hợp màu đỏ là [[tập lồi màu xanh và màu đỏ.]] Trong hình học, **bao lồi** của một hình là tập hợp lồi nhỏ nhất chứa hình đó. Bao lồi có
Trong toán học, **nhóm trực giao** với số chiều n, được ký hiệu là \operatorname{O}(n), là nhóm gồm các phép biến đổi bảo toàn khoảng cách trong một không gian Euclid n chiều bảo toàn