✨Định lý Cauchy

Định lý Cauchy

Có một số định lý được đặt tên theo Augustine-Louis Cauchy.Định lý Cauchy có thể dùng để chỉ:

Định lý tích phân Cauchy Định lý giá trị trung bình Cauchy trong giải tích thực, một mở rộng của định lý giá trị trung bình Định lý Cauchy (lý thuyết nhóm) Định lý Cauchy (hình học) về các đa diện lồi Định lý Cauchy–Kovalevskaya về phương trình vi phân riêng phần Định lý Cauchy–Peano về phương trình vi phân thường

Thể loại:Augustin-Louis Cauchy

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Có một số định lý được đặt tên theo Augustine-Louis Cauchy.**Định lý Cauchy** có thể dùng để chỉ: *Định lý tích phân Cauchy *Định lý giá trị trung bình Cauchy trong giải tích thực, một
**Định lý Cauchy** là một định lý trong lý thuyết nhóm được đặt tên theo tên của nhà toán học người Pháp Augustin Louis Cauchy. Định lý này phát biểu rằng nếu G là một
thumb|300 px|right|Với mọi hàm số liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm c \in (a,b) sao cho đường thẳng nối hai điểm (a,f(a))(b,f(b)) song song với tiếp
Trong toán học, đặc biệt là trong lĩnh vực lý thuyết nhóm hữu hạn, **định lý Sylow** là một nhóm các định lý được đặt tên theo nhà toán học Na Uy Ludwig Sylow vào
Trong toán học, **định lý cơ bản của đại số** khẳng định rằng mọi đa thức một biến khác hằng số với hệ số phức có ít nhất một nghiệm phức. Điều đó tương đương
**Định lý Fermat về số đa giác đều** (tiếng Anh: _Fermat polygonal number theorem_) khẳng định rằng: mỗi số tự nhiên đều có thể biểu diễn thành tổng của không quá _n_ số _n_ giác
Trong lý thuyết đồ thị, **định lý Kirchhoff**, hay **định lý Kirchhoff cho ma trận và cây**, đặt tên theo Gustav Kirchhoff, là một định lý về số cây bao trùm của một đồ thị.
Trong vi tích phân, **định lý Rolle** phát biểu rằng bất cứ hàm giá trị thực nào khả vi, đạt giá trị bằng nhau tại hai điểm phân biệt phải có ít nhất một điểm
Trong giải tích, **công thức tích phân lặp Cauchy**, đặt tên theo Augustin Louis Cauchy, cho phép ta biến nguyên hàm thứ của một hàm số thành một tích phân duy nhất. ## Phát biểu
Trong lý thuyết nhóm, thuật ngữ **cấp** (tiếng Anh: _order_) có hai ý nghĩa, cả hai ý nghĩa này đều liên hệ mật thiết với nhau: * cấp của một nhóm _G_ chính là số
nhỏ| Một [[trục vít. Định lí Mozzi-Chasles phát biểu rằng rằng mọi chuyển động Euclide là một chuyển động xoắn vít dọc theo một trục vít. ]] Trong động học, **định lý Chasles,** hay **định
Trong toán học, **dãy Cauchy** (; ), được đặt tên theo nhà toán học Augustin-Louis Cauchy, là dãy mà các phần tử tiến đến gần nhau tùy ý khi dãy tiếp tục. Chính xác hơn,
**Tiêu chuẩn hội tụ Cauchy** là một phương pháp kiểm tra sự hội tụ của một chuỗi vô hạn. Nó dựa vào tổng bị chặn của các số hạng trong dãy. Tiêu chuẩn hội tụ
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
Trong đại số, **định thức Brahmagupta–Fibonacci** biến tích của hai tổng hai số chính phương thành tổng của hai số chính phương dưới hai cách khác nhau. Cụ thể hơn, định lý phát biểu :\begin{align}
Trong lý thuyết hệ thống điều khiển, **tiêu chuẩn ổn định Routh-Hurwitz **là một kiểm tra toán học là một điều kiện cần và đủ cho sự ổn định của một hệ thống điều khiển
phải|nhỏ|280x280px|Hàm đặc trưng của một biến ngẫu nhiên với phân phối đều _U_(–1,1). Hàm này là giá trị thực bởi vì nó tương ứng với một biến ngẫu nhiên đối xứng qua gốc; tuy nhiên
Trong toán học, **giá trị chủ yếu Cauchy**, đặt theo tên của Augustin Louis Cauchy, là một phương pháp gán giá trị cho tích phân suy rộng đã biết mà nếu không sẽ không xác
thumb|Biểu đồ Nyquist của G(s)=\frac{1}{s^2+s+1}. Trong lý thuyết điều khiển tự động và lý thuyết ổn định, **tiêu chuẩn ổn định Nyquist**, được phát minh bởi kỹ sư điện người Thụy Điển-Mỹ Harry Nyquist tại
Trong giải tích, **Quy tắc l'Hôpital **(cách viết khác l'Hospital, , phát âm như _Lô-pi-tan_), cũng được gọi là **quy tắc Bernoulli**, là quy tắc sử dụng đạo hàm để tính toán các giới hạn
Trong đại số và giải tích, **bất đẳng thức Cauchy-Schwarz** (cũng gọi là **bất đẳng thức Cauchy-Bunyakovsky-Schwarz**) phát biểu rằng trị tuyệt đối của tích vô hướng của hai vector luôn nhỏ hơn hoặc bằng
Cùng với khái niệm không gian mêtric, **không gian định chuẩn** cũng đóng vai trò rất quan trọng trong giải tích nói chung và topo nói riêng. ## Sơ lược về không gian định chuẩn
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
nhỏ|upright=1.35|Áp dụng định lý Pythagoras để tính khoảng cách Euclid trong mặt phẳng Trong toán học, **khoảng cách Euclid** () giữa hai điểm trong không gian Euclid là độ dài của đoạn thẳng nối hai
nhỏ|Zenon xứ Elea. **Nghịch lý Zeno** bao gồm nhiều vấn đề thuộc lĩnh vực triết học được cho là do triết gia Hy Lạp Zeno xứ Elea đặt ra nhằm củng cố học thuyết "vạn
**Sofia Vasilyevna Kovalevskaya** () ( – ). Tên phiên âm là **Cô-va-lép-xkai-a**. Bà là nhà toán học lớn của Nga, với nhiều đóng góp quan trọng cho các ngành thống kê, phương trình vi phân
right|thumb|Kí hiệu tập hợp **số thực** (ℝ) Trong toán học, một **số thực** là một giá trị của một đại lượng liên tục có thể biểu thị một khoảng cách dọc theo một đường thẳng
Nam tước **Augustin-Louis Cauchy** (21 tháng 8, 1789 - 23 tháng 5, 1857) là một nhà toán học, nhà vật lý, kỹ sư người Pháp. Ông vào học Trường Bách khoa Paris (_École Polytechnique_) lúc
Trong toán học, **không gian Hilbert** (Hilbert Space) là một dạng tổng quát hóa của không gian Euclid mà không bị giới hạn về vấn đề hữu hạn chiều. Đó là một không gian có
phải|nhỏ|250x250px|Ma trận biến đổi _A_ tác động bằng việc kéo dài vectơ _x_ mà không làm đổi phương của nó, vì thế _x_ là một vectơ riêng của _A_. Trong đại số tuyến tính, một
Trong cơ học môi trường liên tục, **tenxơ ứng suất Cauchy** \boldsymbol\sigma\,\!, **tenxơ ứng suất thực**, hay gọi đơn giản là **tenxơ ứng suất**, đặt tên theo nhà toán học Augustin-Louis Cauchy, là tenxơ hạng
Trong toán học và thống kê, một **phân phối xác suất** hay thường gọi hơn là một **hàm phân phối xác suất** là quy luật cho biết cách gán mỗi xác suất cho mỗi khoảng
**Bổ đề Burnside**, còn được gọi là **định lý đếm của Burnside**, **bổ đề Cauchy-Frobenius** hay **định lý đếm số quỹ đạo**, là một kết quả trong lý thuyết nhóm thường dùng tính đối xứng
thumb|right|Khi điểm nằm trong một khoảng so với , nằm trong một khoảng so với Trong giải tích, **định nghĩa (\epsilon,\delta) của giới hạn** (định nghĩa giới hạn bằng ký tự epsilon–delta) là một phát
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
**Leonhard Euler** ( , ; 15 tháng 4 năm 170718 tháng 9 năm 1783) là một nhà toán học, nhà vật lý học, nhà thiên văn học, nhà lý luận và kỹ sư người Thụy
Trong cơ học Newton, **động lượng tuyến tính**, **động lượng** **tịnh tiến** hay đơn giản là **động lượng** là đại lượng vật lý đặc trưng cho khả năng truyền chuyển động của vật. Nó được
phải|nhỏ|Các số tự nhiên dùng để đếm (một quả táo, hai quả táo, ba quả táo....). Trong toán học, các **số tự nhiên** được sử dụng để đếm (như trong "có _sáu_ đồng xu trên
Mục đích của bài viết này là làm nổi bật những điểm quan trọng về nguồn gốc của các phương trình Navier–Stokes cũng như các ứng dụng và việc xây dựng công thức cho các
nhỏ|285x285px|Các số hữu tỉ (ℚ) được bao gồm trong các [[số thực (ℝ), trong khi bản thân chúng bao gồm các số nguyên (ℤ), đến lượt nó bao gồm các số tự nhiên (ℕ)]] Trong
**Tullio Levi-Civita**, Hội viên Hội Hoàng gia Luân Đôn (29 tháng 3 năm 1873-29 tháng 12 năm 1941) là một nhà toán học người Do Thái ở Italia, nổi tiếng nhất với công trình nghiên
Trong toán học, một **hàm liên tục** hay **hàm số liên tục** là một hàm số không có sự thay đổi đột ngột trong giá trị của nó, gọi là những điểm gián đoạn. Chính
right|thumb|Một lưới hình chữ nhật (trên) và ảnh của nó qua một [[ánh xạ bảo giác (dưới).]] Trong toán học, một **hàm chỉnh hình** (**ánh xạ bảo giác**) là một hàm nhận giá trị phức
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
right|thumb|alt=Sơ đồ hình lục giác, ngũ giác và bát giác nội tiếp và ngoại tiếp một đường tròn|Dãy số cho bởi chu vi của một [[đa giác đều _n_ cạnh ngoại tiếp đường tròn có
\; \exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2} \right) \!| cdf =\frac12 \left(1 + \mathrm{erf}\,\frac{x-\mu}{\sigma\sqrt2}\right) \!| mean =\mu| median =\mu| mode =\mu| variance =\sigma^2| skewness = 0| kurtosis = 0| entropy =\ln\left(\sigma\sqrt{2\,\pi\,e}\right)\!| mgf =M_X(t)= \exp\left(\mu\,t+\frac{\sigma^2 t^2}{2}\right)| char =\phi_X(t)=\exp\left(\mu\,i\,t-\frac{\sigma^2 t^2}{2}\right)| **Phân phối
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Trong toán học, một chuỗi là một tổng hình thức các số hạng của một dãy số vô hạn. Cho một dãy vô hạn (a_1, a_2, a_3, \dots), tổng thành phần thứ _n_ của nó
Trong toán học, các **dấu hiệu hội tụ** (hay **tiêu chuẩn hội tụ**) là các phương pháp kiểm tra sự hội tụ, hội tụ có điều kiện, hội tụ tuyệt đối, khoảng hội tụ hay
phải|Mỗi phần tử của một ma trận thường được ký hiệu bằng một biến với hai chỉ số ở dưới. Ví dụ, a2,1 biểu diễn phần tử ở hàng thứ hai và cột thứ nhất