right|thumb|Bốn phương pháp của tổng Riemann cho diện tích được ước tính dưới đường cong. Phương pháp phải và trái ước tính điểm cuối phải và trái của mỗi khoảng con, lần lượt. Phương pháp cực đại và cực tiểu ước tính bằng cách sử dụng giá trị điểm cuối lớn nhất và nhỏ nhất của mỗi khoảng con, lần lượt. Giá trị của tổng như là các khoảng con chia đều từ trái trên tới phải dưới.
Trong toán học, một tổng Riemann là một thể loại của phép tính gần đúng của tích phân bởi một tổng hữu hạn. Nó được đặt tên theo sau nhà toán học người Đức thế kỷ 19 Bernhard Riemann. Một ứng dụng thường thấy không những là phép tính gần đúng diện tích của hàm số hoặc đường thẳng trên đồ thị, mà còn là độ dài đường cong và một số phép tính gần đúng khác.
Tổng được tính toán bằng sự phân chia các vùng thành các dạng hình (hình chữ nhật, hình thang, parabol, hoặc hình hàm bậc ba) mà cùng nhau tạo thành những vùng giống với những vùng đã có được công thức tính toán, sau đó tính diện tích của mỗi vùng này, và cuối cùng cộng tất cả diện tích của những vùng nhỏ này với nhau. Phương pháp này có thể được dùng để tìm một số gần đúng cho tích phân xác định mặc dù định lý cơ bản của giải tích cho rằng nó không dễ để tìm một kết quả dạng đóng.
Bởi vì có những trường hợp những vùng này không phải là những vùng đã có được công thức tính toán từ trước, nên tổng Riemann sẽ khác với diện tích được tính toán. Lỗi này có thể được giảm đi bằng cách chia khoảng một cách chính xác nhất (nhỏ hơn và nhỏ hơn nữa). Khi mà hình dạng được chia nhỏ hơn và nhỏ hơn, tổng sẽ tiến tới tích phân Riemann.
Khái niệm
Cho là hàm số xác định đoạn của tập hợp số thực , và
:,
là sự phân chia của I, khi
:.
Tổng Riemann của f trên I với sự phân chia P (độ dài) được định nghĩa bởi:
:
khi và một đoạn .
Chú ý từ "một đoạn" của câu trước. Một cách nghĩ khác về dấu hoa thị này là ta đang chọn một điểm bất kỳ trên đoạn này, và không cần quan tâm đến là chọn điểm nào; khi mà hiệu hoặc độ dài của đoạn tiến tới không, hiệu giữa hai điểm trong đoạn hình chữ nhật này cũng tiến tới không. Đây là bởi vì sự lựa chọn trong đoạn là bất kỳ, nên bất kỳ hàm số f nào xác định trên khoảng I và khoảng chia P, mỗi một hàm số sẽ cho ra các tổng khác nhau phụ thuộc vào được chọn, miễn là vẫn đúng.
Một số dạng đặc trưng của tổng Riemann
Mỗi sự lựa chọn cho ta dạng tổng Riemann khác nhau:
- Nếu với mọi i, thì S được gọi là quy tắc trái hoặc tổng Riemann trái.
- Nếu với mọi i, thì S được gọi là quy tắc phải hoặc tổng Riemann phải.
- Nếu với mọi i, thì S được gọi là quy tắc điểm giữa hoặc tổng Riemann giữa.
- Nếu (nó là, cận trên đúng của f trên ), thì S được định nghĩa là tổng Riemann cao hoặc tổng Darboux cao.
- Nếu (nó là, cận dưới đúng của f trên ), thì S được định nghĩa là tổng Riemann thấp hoặc tổng Darboux thấp.
Những phương pháp này là những phương pháp cơ bản nhất để tính được phép lấy tích phân bằng số. Nói dễ hơn, hàm số có thể tích phân Riemann được nếu tất cả các tổng Riemann có giá trị bằng nhau (bao gồm tổng Riemann trái, tổng Riemann phải, tổng Riemann giữa, tổng Riemann cao/tổng Darboux cao và tổng Riemann thấp/tổng Darboux thấp) khi các khoảng chia càng ngày tiến đến 0.
Nếu nó không phải là tổng Riemann, tổng trung bình của trái và phải Riemann là quy tắc hình thang và là một trong những cách chung đơn giản nhất để tính gần đúng tích phân bằng cách sử dụng trung bình trọng số. Điều này theo sau tính phức tạp bởi quy tắc Simpson và công thức Newton–Cotes.
Bất kỳ tổng Riemann với khoảng chia (đó là, với bất kỳ sự lựa chọn nào của giữa và ) đều ở trong tổng Darboux cao và thấp. Điều này làm cơ sở cho tích phân Darboux, khi nó tương đương với tích phân Riemann.
Phương pháp
Bốn phương pháp của tổng Riemann là những pháp cơ bản nhất. Đoạn [a, b] được chia thành n khoảng con, có độ dài
:
Điểm trong khoảng chia này sẽ là
:
Tổng Riemann trái
thumb|right|Tổng Riemann trái của hàm x3 trên đoạn [0,2] với 4 khoảng con
Với tổng Riemann trái, phép tính gần đúng hàm số bằng cách sử dụng giá trị của nó tại điểm trái cùng cho nhiều hình chữ nhật với chiều dài Δx và chiều cao f(a + _i_Δx). Làm điều này đối với i = 0, 1,..., n − 1, và cộng vào diện tích thu được cho
: |
Tổng Riemann trái cao hơn giá trị nếu f có sự nghịch biến trên đoạn này, và thấp hơn giá trị nếu có sự đồng biến.
Tổng Riemann phải
thumb|right|Tổng Riemann phải của hàm x3 trên đoạn [0,2] với 4 khoảng con
f ở đây được tính gần đúng bởi giá trị của điểm cuối bên phải. Cho nhiều hình chữ nhật với chiều dài Δx và độ cao f(a + i Δx). Làm điều này đối với i = 1,..., n, và cộng vào diện tích thu được cho
:
Tổng Riemann phải này là thấp hơn nếu f nghịch biến, và cao hơn nếu nó đồng biến.
Sai số của công thức này sẽ là
:,
với là giá trị lớn nhất của giá trị tuyệt đối của trên đoạn này.
Quy tắc điểm giữa
thumb|right|Tổng Riemann giữa của hàm x3 trên đoạn [0,2] với 4 khoảng con
Phép tính gần đúng f tại điểm giữa của đoạn cho f(a + Δx/2) của khoảng thứ nhất, kế tiếp là f(a + 3Δx/2), và tiếp tục cho đến f(b − Δx/2). Tổng diện tích thu được cho
:.
Sai số của công thức này sẽ là
:,
với là giá trị lớn nhất của giá trị tuyệt đối của trên đoạn này.
Quy tắc hình thang
thumb|right|Tổng Riemann hình thang của hàm x3 trên đoạn [0,2] với 4 khoảng con
Trong trường hợp này, giá trị của hàm f trên đoạn này được tính gần đúng bởi trung bình giá trị của điểm cuối trái và phải. Tương tự như những phương pháp trên, tính toán diện tích thu được
:
cho một hình thang với hai cạnh song song b1, b2 và chiều cao h cho
:
Sai số của công thức này sẽ là
:
với là giá trị lớn nhất của giá trị tuyệt đối của .
Phép tính gần đúng thu được với quy tắc hình thang cho một hàm số là giống với trung bình của tổng phía bên trái và phải của hàm số đó.
Sự liên quan với tích phân
Tổng Riemann một bằng phẳng trên đoạn , với khoảng chia lớn nhất gần bằng không (đó là giới hạn của khoảng chia bình thường), một hàm số sẽ có các tổng Riemann giống nhau. Giá trị giới hạn này, nếu nó tồn tại, được định nghĩa là tích phân Riemann xác định của hàm số đó trên tập xác định ,
:
hoặc
:
với định nghĩa
Trong trường hợp tập xác định hữu hạn, nếu giá trị lớn nhất của khoảng chia tiến tới không, điều này nhấn mạnh số lượng phần tử chia tiến tới vô cực. Với khoảng chia hữu hạn, tổng Riemann luôn luôn là phép tính gần đúng tới giá trị giới hạn và phép tính gần đúng này sẽ chính xác hơn nếu nó có khoảng chia nhỏ hơn nữa. Đồ thị hoạt hóa sau đây giúp minh họa số lượng của khoảng chia tăng thì diện tích được ước tính chính xác hơn như thế nào dưới đường cong (trong khi giảm dần độ dài khoảng chia):
Tập tin:Riemann sum (leftbox).gif|Tổng trái
Tập tin:Riemann sum (rightbox).gif|Tổng phải
Tập tin:Riemann sum (middlebox).gif|Tổng giữa
Bởi vì hàm số của đường màu đỏ ở đây là một hàm số trơn, nên tất cả những tổng Riemann sẽ cho ra giá trị giống nhau khi số lượng khoảng chia tiến tới vô cực.
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
right|thumb|Bốn phương pháp của tổng Riemann cho diện tích được ước tính dưới đường cong. Phương pháp **phải** và **trái** ước tính điểm cuối phải và trái của mỗi khoảng con, lần
**Georg Friedrich Bernhard Riemann** (phát âm như "ri manh" hay IPA ['ri:man]; 17 tháng 9 năm 1826 – 20 tháng 7 năm 1866) là một nhà toán học người Đức, người đã có nhiều đóng
**Hình học Riemann** là một nhánh của hình học vi phân nghiên cứu các đa tạp Riemann, đa tạp trơn với _metric Riemann_ hay với một tích trong (inner product) trên không gian tiếp tuyến
Đây là một danh sách một số thuật ngữ được sử dụng trong hình học Riemannian và hình học metric — không bao gồm các thuật ngữ của tô pô vi phân. Các bài viết
nhỏ|Phần thực (màu đỏ) và phần ảo (màu xanh) của hàm zeta Riemann dọc theo đường giới hạn Re(_s_) = 1/2. Các không điểm phi tầm thường đầu tiên tại Im(_s_) = ±14,135; ±21,022 và
Toàn bộ sản phẩm do chủ shop (hiện đang sinh sống tại Anh) tự đặt, mong được Quý khách tin tưởng và ủng hộ!Màng lọc chống nắng thế hệ mới:Uvinul A Plus (UVA1 UVA2)Octisalate (UVB)Uvinul
right|thumb|200x200px|Một tích phân suy rộng loại một. Tích phân được xác định trên một miền không bị chặn. right|thumb|200x200px|Một tích phân Riemann suy rộng loại hai. Tích phân có thể không tồn tại vì một
**Tích phân bội** là một loại tích phân xác định được mở rộng cho các hàm có nhiều hơn một biến thực, ví dụ, _ƒ_(_x_, _y_) hoặc _ƒ_(_x_, _y_, _z_). Các tích phân của một
right|thumb|Hình chữ nhật kẻ ô (ảnh trên) và ảnh của nó dưới ánh xạ bảo giác (ảnh dưới). Có thể thấy rằng ánh xạ các cặp đường vuông góc với nhau tại 90°
**Lê Văn Thiêm** (29 tháng 3 năm 1918 – 3 tháng 7 năm 1991) là tiến sĩ toán học đầu tiên của Việt Nam, giáo sư toán học và là một trong số các nhà
nhỏ|phải|Khi quay một đường cong quanh một trục tạo thành [[mặt tròn xoay; nó là mặt của khối tròn xoay.]] Các khối tròn xoay ([[:pt:Matemateca IME-USP|Matemateca Ime-Usp)]] Trong toán học, kỹ thuật, và sản xuất
Trong lượng giác, **tích phân của hàm secant** là một trong những "đề tài mở nổi bật giữa thế kỉ XVII", được giải vào năm 1668 nhờ James Gregory. Vào năm 1599, Edward Wright đã
thumb|Một hậu quả của Theorema Egregium là [[Trái Đất không thể được hiển thị trên bản đồ mà không bị biến dạng. Phép chiếu Mercator, được hiển thị ở đây, giữ nguyên góc nhưng không
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
nhỏ|Giai kết chính thức/thực sự(perfect authentic cadence) (IV–V–I Hợp âm, tại đó chúng ta thấy hợp âm Fa trưởng, Son trưởng, và sau đó là Đô trưởng trong phần hòa âm thứ 4) trong Đô
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
Tích phân xác định được định nghĩa như diện tích _S_ được giới hạn bởi đường cong _y_=_f_(_x_) và trục hoành, với _x_ chạy từ _a_ đến _b_ **Tích phân** (Tiếng Anh: _integral_) là một
Trong lý thuyết âm nhạc về Giọng Điệu, một **công năng** (thường được gọi là công năng hòa âm, công năng Giọng Điệu hay công năng diatonic hay cũng có thể là vùng hợp âm)
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Thí nghiệm kiểm tra lý thuyết tương đối tổng quát đạt độ chính xác cao nhờ tàu thăm dò không gian [[Cassini–Huygens|Cassini (ảnh minh họa): Các tín hiệu radio được gửi đi giữa Trái Đất
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Leonhard Euler** ( , ; 15 tháng 4 năm 170718 tháng 9 năm 1783) là một nhà toán học, nhà vật lý học, nhà thiên văn học, nhà lý luận và kỹ sư người Thụy
Trong lý thuyết số, **tích Euler** là dạng khai triển chuỗi Dirichlet thành tích vô hạn được đánh chỉ số bởi các số nguyên tố. Tích gốc xuất hiện trong bài chứng minh công thức
**Các bài toán thiên niên kỷ** (tiếng Anh: _Millennium Prize Problems_) là bảy bài toán nổi tiếng và phức tạp được lựa chọn bởi Viện Toán học Clay vào ngày 24 tháng 5 năm 2000,
nhỏ|Trong một 2-mặt cầu thông thường, bất kì một vòng kín nào có thể thu nhỏ một cách liên tục thành một điểm trên mặt cầu. Liệu điều kiện này có đặc trưng cho 2-mặt
right|thumb|Một lưới hình chữ nhật (trên) và ảnh của nó qua một [[ánh xạ bảo giác (dưới).]] Trong toán học, một **hàm chỉnh hình** (**ánh xạ bảo giác**) là một hàm nhận giá trị phức
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
**Johann Carl Friedrich Gauß** (; ; ; 30 tháng 4 năm 1777 – 23 tháng 2 năm 1855) là một nhà toán học và nhà khoa học người Đức tài năng, người đã có nhiều
Trong toán học, **hàm đếm số nguyên tố** là hàm số đếm số lượng các số nguyên tố nhỏ hơn hoặc bằng với một số thực _x._ Nó được ký hiệu là (_x_) (không liên
**Đại học Göttingen**, tên chính thức là **Đại học Georg August Göttingen** () thường được gọi **Georgia Augusta**, là một viện đại học nghiên cứu công lập tại Göttingen, Đức. Được Quốc vương Anh kiêm
phải|Một tam giác nhúng trên mặt yên ngựa (mặt [[hyperbolic paraboloid), cũng như hai đường thẳng _song song_ trên nó.]] **Hình học vi phân** là một nhánh của toán học sử dụng các công cụ
**John Edensor Littlewood** (9 tháng 6 năm 1885 – 6 tháng 9 năm 1977) là một nhà toán học người Anh. Ông nghiên cứu chủ yếu về giải tích, lý thuyết số và phương trình
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
## Sự hình thành thuyết tương đối tổng quát ### Những khảo sát ban đầu Albert Einstein sau này nói rằng, lý do cho sự phát triển thuyết tương đối tổng quát là do sự
right|thumb|upright=1.35|alt=Graph showing a logarithmic curve, crossing the _x_-axis at _x_= 1 and approaching minus infinity along the _y_-axis.|[[Đồ thị của hàm số|Đồ thị của hàm logarit cơ số 2 cắt trục hoành tại và đi
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
**Phương trình Pell** (Pell's equation) là bài toán tìm nghiệm nguyên Diophantine bậc hai với yêu cầu là giải một trong những phương trình nghiệm nguyên sau: :dạng chính tắc (còn gọi là _phương trình
Trong toán học, một **nhóm Lie**, được đặt tên theo nhà toán học người Na Uy Sophus Lie (IPA pronunciation: , đọc như là "Lee"), là một nhóm (group) cũng là một đa tạp khả
nhỏ|[[Edmund Landau, nhà toán học Đức]] Tại hội nghị toán học quốc tế năm 1912, Edmund Landau đã liệt kê ra bốn bài toán về số nguyên tố. Các bài toán được nói theo lời
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
Trong toán học, các **dấu hiệu hội tụ** (hay **tiêu chuẩn hội tụ**) là các phương pháp kiểm tra sự hội tụ, hội tụ có điều kiện, hội tụ tuyệt đối, khoảng hội tụ hay
Trong toán học, **hàm von Mangoldt** là hàm số học được theo tên nhà toán học Đức Hans von Mangoldt. Nó là một trong những ví dụ quan trọng về hàm số học không nhân
**Viện Toán học Clay**, (tiếng Anh: **Clay Mathematics Institute**, viết tắt là **CMI**) là một tổ chức không vụ lợi do Quỹ tư nhân lập ra ở Cambridge, Massachusetts, Hoa Kỳ. Viện cống hiến cho
**Khâu Thành Đồng** (tên tiếng Anh: **Shing-Tung Yau**, chữ Hán: 丘成桐, sinh ngày 4 tháng 4 năm 1949), là một nhà toán học Hoa Kỳ gốc Hoa, giữ ghế giáo sư William Caspar Graustein tại
Trong toán học, thuật ngữ " **phiếm hàm** " (danh từ, tiếng Anh là **functional**) có ít nhất 3 nghĩa sau : nhỏ|451x451px|Phiêm hàm [[Chiều dài cung - Arc length|chiều dài cung đi từ miền
Giá trị thập phân của logarit tự nhiên của 2 xấp xỉ bằng : Logarit cơ số khác của 2 được tính bằng công thức :
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
**Christian Felix Klein** (25 tháng 4 năm 1849 – 22 tháng 6 năm 1925) là nhà toán học người Đức, được biết đến với những nghiên cứu của ông trong lý thuyết nhóm, lý thuyết
thumb|Tính chất tiệm cận của việc làm trơn. Tung độ gốc của đường thẳng là −. |alt=Một biểu đồ cho thấy đường thẳng cắt trục tung Trong toán học, , còn được viết là :