✨Hình học Riemann

Hình học Riemann

Hình học Riemann là một nhánh của hình học vi phân nghiên cứu các đa tạp Riemann, đa tạp trơn với metric Riemann hay với một tích trong (inner product) trên không gian tiếp tuyến tại mỗi điểm mà các điểm này thay đổi trơn từ điểm này sang điểm khác. Điều này cho các kết quả đặc biệt như khái niệm cục bộ về góc, độ dài cung, diện tích mặt, và thể tích. Từ các khái niệm này một vài đại lượng toàn cục được dẫn ra bằng cách tích phân các thành phần cục bộ.

Hình học Riemann bắt nguồn từ tầm nhìn của Bernhard Riemann trong luận án của ông Über die Hypothesen, welche der Geometrie zu Grunde liegen (tiếng Việt: Về các giả thuyết trong đó hình học là cơ sở). Nó là một sự tổng quát trừu tượng và rộng lớn của hình học vi phân các mặt cong trong R3. Quá trình phát triển hình học Riemann đã tổng hợp rất nhiều kết quả khác nhau trong hình học của các mặt và mối quan hệ của các đường trắc địa trên các mặt, các kĩ thuật của nó được ứng dụng để nghiên cứu các đa tạp khả vi trong không gian nhiều chiều. Hình học Riemann cũng được áp dụng trong thuyết tương đối tổng quát của Albert Einstein, có tác động tích cực đến lý thuyết nhóm và lý thuyết biểu diễn, cũng như là giải tích toàn cục, và là động lực để phát triển tô pô đại số và tô pô vi phân.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Hình học Riemann** là một nhánh của hình học vi phân nghiên cứu các đa tạp Riemann, đa tạp trơn với _metric Riemann_ hay với một tích trong (inner product) trên không gian tiếp tuyến
Đây là một danh sách một số thuật ngữ được sử dụng trong hình học Riemannian và hình học metric — không bao gồm các thuật ngữ của tô pô vi phân. Các bài viết
phải|nhỏ| Ánh xạ mũ của Trái Đất nhìn từ cực bắc là phép chiếu phương vị đứng (bảo toàn khoảng cách) trong địa lý. Trong hình học Riemann, **ánh xạ mũ** hay **ánh xạ exp**
Trong hình học vi phân, **đẳng cấu thăng giáng** là một đẳng cấu giữa phân thớ tiếp xúc \mathrm{T}M và phân thớ đối tiếp xúc \mathrm{T}^* M của một đa tạp Riemann, cảm sinh bởi
thumb|Bảng các yếu tố trong hình học, trích từ cuốn _[[Cyclopaedia_ năm 1728.]] **Hình học** (geometry) bắt nguồn từ ; _geo-_ "đất", _-metron_ "đo đạc", nghĩa là đo đạc đất đai, là ngành toán học
phải|Một tam giác nhúng trên mặt yên ngựa (mặt [[hyperbolic paraboloid), cũng như hai đường thẳng _song song_ trên nó.]] **Hình học vi phân** là một nhánh của toán học sử dụng các công cụ
**Hình học phi Euclid** là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất một trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những công trình
**Phân tích hình học** (hay còn được gọi là **giải tích hình học**) là một nguyên lý toán học tại giao diện giữa hình học vi phân và các phương trình vi phân. Nó bao
Trong toán học, **hình học phức** là ngành nghiên cứu về các đa tạp phức, các đa tạp đại số phức và các hàm biến phức. Các phương pháp chủ đạo bao gồm hình học
Trong toán học, một **phép nhúng** khái quát hóa ý tưởng về việc đặt một vật thể vào trong một vật thể khác (một cách phù hợp). ## Tô pô và hình học ### Tô
**Georg Friedrich Bernhard Riemann** (phát âm như "ri manh" hay IPA ['ri:man]; 17 tháng 9 năm 1826 – 20 tháng 7 năm 1866) là một nhà toán học người Đức, người đã có nhiều đóng
right|thumb|Hình chữ nhật kẻ ô (ảnh trên) và ảnh của nó dưới ánh xạ bảo giác f (ảnh dưới). Có thể thấy rằng f ánh xạ các cặp đường vuông góc với nhau tại 90°
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
thumb|Tam giác trắc địa trên mặt cầu.Các đường trắc địa là các cung tròn lớn. nhỏ|Một phần của hai đường dòng trắc địa trên phân thớ tiếp xúc của đường tròn. Lưu ý rằng ta
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Giáo trình Hình học vi phần này là một giáo trình về hình học vi phân cổ điển lí thuyết về đường và mặt trong không gian Euclid hai, ba chiều, đồng thời là một
phải|nhỏ|Một đường tròn lớn chia hình cầu thành hai bán cầu bằng nhau **Đường tròn lớn** hay **vòng tròn lớn** của một mặt cầu là giao điểm của mặt cầu và một mặt phẳng mà
thumb|Hai mặt phẳng giao nhau trong không gian ba chiều Trong toán học, _mặt phẳng_ là một mặt hai chiều phẳng kéo dài vô hạn. Một **mặt phẳng** là mô hình hai chiều tương tự
nhỏ|phải| Mặt Riemann ứng với "hàm số" f(z)=\sqrt{z}. Trong toán học, **mặt Riemann** (hay còn gọi là **diện Riemann**), đặt tên theo nhà toán học Bernhard Riemann, là đa tạp phức một chiều. Mặt Riemann
Trong hình học vi phân, một **đa tạp Riemann** hoặc **không gian Riemann** là một đa tạp thực trơn _M_ được trang bị với một tích vô hướng _g__p_ xác định dương trên không gian
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
**Toán học của thuyết tương đối rộng** là mô hình chứa đựng cấu trúc và kỹ thuật toán học được sử dụng để nghiên cứu và thiết lập lên thuyết tương đối rộng của Einstein.
**Trừu tượng hóa** trong toán học là quá trình rút ra bản chất cơ bản của một khái niệm toán học, loại bỏ bất kỳ sự phụ thuộc nào vào các đối tượng trong thế
Trong toán học, **chuỗi** có thể được nói là, việc cộng lại vô hạn các số lại với nhau bất đầu từ số ban đầu. Chuỗi là phần quan trọng của vi tích phân và
phải|150x150px|Một hình vành khăn nhỏ|Hình minh họa theo phương pháp [[vi tích phân trực quan của Mamikon cho thấy diện tích của hai hình vành khăn có cùng độ dài dây cung lớn nhất là
thumb|Một hậu quả của Theorema Egregium là [[Trái Đất không thể được hiển thị trên bản đồ mà không bị biến dạng. Phép chiếu Mercator, được hiển thị ở đây, giữ nguyên góc nhưng không
nhỏ|phải|Hình chữ nhật _ABCD_ với hai đường chéo **Hình chữ nhật** trong hình học Euclid là một hình tứ giác có bốn góc vuông. Từ định nghĩa này, ta thấy hình chữ nhật là một
phải|nhỏ|Định luật cos cho tam giác trên mặt cầu. Trong hình học trên mặt cầu, **định luật cos** (hay **định lý cos**) là một định lý liên hệ các cạnh của tam giác trên mặt
**Giải Toán học Ruth Lyttle Satter** () hay **Giải Satter** () là một trong hai mươi mốt giải thưởng được trao bởi Hội Toán học Hoa Kỳ (AMS) và được trao hai năm một lần
right|thumb|Bốn phương pháp của tổng Riemann cho diện tích được ước tính dưới đường cong. Phương pháp **phải** **trái** ước tính điểm cuối phải và trái của mỗi khoảng con, lần
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
Trong toán học, cụ thể là ngành giải tích phức, một **hàm phân hình** trên một tập con mở của mặt phẳng phức là một hàm số chỉnh hình trên toàn bộ _ngoại trừ_ một
phải|nhỏ|469x469px| Điểm kì dị tại z=1 và hai không điểm trên đường tới hạn. **Hàm** **zeta Riemann** hoặc **hàm zeta Euler-Riemann**, , là một hàm số một biến phức, là kết quả thác triển giải
nhỏ|Trong một 2-mặt cầu thông thường, bất kì một vòng kín nào có thể thu nhỏ một cách liên tục thành một điểm trên mặt cầu. Liệu điều kiện này có đặc trưng cho 2-mặt
**Đại học Göttingen**, tên chính thức là **Đại học Georg August Göttingen** () thường được gọi **Georgia Augusta**, là một viện đại học nghiên cứu công lập tại Göttingen, Đức. Được Quốc vương Anh kiêm
**Raoul Bott** (24.9.1923 – 20.12.2005) là nhà toán học nổi tiếng vì có rất nhiều đóng góp trong môn hình học theo nghĩa rộng. Ông rất nổi tiếng về định lý tính chu kỳ Bott
**Grigori Yakovlevich Perelman** (, sinh ngày 13 tháng 6 năm 1966), đôi khi còn được biết đến với tên **Grisha Perelman**, là một nhà toán học người Nga có nhiều đóng góp đến hình học
###### Trong toán học, một **phép đẳng cự** là một phép biến đổi bảo toàn khoảng cách giữa các không gian metric, thường được giả sử là một song ánh. nhỏ| [[Hàm hợp|Hợp của hai
**Định lý Hopf–Rinow** là một tập hợp các phát biểu về tính đầy trắc địa của các đa tạp Riemann. Nó được đặt theo tên của Heinz Hopf và sinh viên Willi Rinow, người đã
**Gregorio Ricci-Curbastro** (; sinh ngày 12 tháng 1 năm 1853 - mất ngày 6 tháng 8 năm 1925) là một nhà toán học người Ý được sinh ra ở Lugo di Romagna. Ông được biết
thumb|Tính chất tiệm cận của việc làm trơn. Tung độ gốc của đường thẳng là −. |alt=Một biểu đồ cho thấy đường thẳng cắt trục tung Trong toán học, , còn được viết là :\sum_{n=1}^{\infin}
Trong toán học, đặc biệt là trong hình học vi phân, một **liên kết** (cũng gọi là **liên thông**) trên một phân thớ véc tơ là một cách định nghĩa dịch chuyển song song trên
Trong hình học, **độ cong** thể hiện sự lệch hướng tại một điểm trên đường cong, mặt cong hay không gian Riemann nói chung. ## Độ cong của một đường cong ### Định nghĩa Theo
Trong hình học vi phân, một **phép ngập** là một ánh xạ khả vi giữa các đa tạp vi phân sao cho tại mọi điểm, vi phân của nó là một toàn ánh. Đây là
thumb|Hình vẽ minh họa cho phát biểu gốc của Euclid về tiên đề song song. Trong hình học, **định đề song song** (tiếng Anh: _parallel postulate_) hay **định đề thứ năm của Euclid** do là
phải|nhỏ|300x300px|Hệ [[Hệ tọa độ cầu|tọa độ cầu được sử dụng phổ biến trong _vật lý_ . Nó gán ba số (được gọi là tọa độ) cho mọi điểm trong không gian Euclide: khoảng cách xuyên
nhỏ|phải|Chai Klein nhỏ|phải|[[Felix Klein (1849 - 1925)]] Trong toán học, **chai Klein** (hay **bình Klein**) là một ví dụ cho **mặt không định hướng**, nói cách khác, đó là một bề mặt (một **đa tạp**
nhỏ|phải|Các đoạn thẳng trong không gian afin 2 chiều. Trong toán học, **không gian afin** (hoặc **không gian aphin**) là một cấu trúc hình học tổng quát tính chất của các đường thẳng song song