Trong hình học vi phân, một đa tạp Riemann hoặc không gian Riemann là một đa tạp thực trơn M được trang bị với một tích vô hướng gp xác định dương trên không gian tiếp tuyến TpM tại mỗi điểm p. Theo qui ước, g là một tích vô hướng trơn. Tức là với mọi bản đồ trơn (U, x) trên M, n2 hàm
:
là các hàm trơn. Tương tự, ta có thể xét các mêtric Riemann Lipschitz hoặc các mêtric Riemann đo được, vân vân.
Họ các tích vô hướng gp nói trên được gọi là mêtríc Riemann (hay tenxơ mêtric Riemann). Những thuật ngữ này được đặt theo tên nhà toán học người Đức Bernhard Riemann. Ngành nghiên cứu về các đa tạp Riemann được gọi là hình học Riemann.
Một một (tenxơ) mêtríc Riemann cho phép định nghĩa một số khái niệm hình học trên các đa tạp Riemann, chẳng hạn như góc tại một giao điểm, chiều dài đường cong, diện tích bề mặt và các đại lương chiều cao tương ứng (thể tích, v.v.), độ cong ngoại biên của các đa tạp con, và độ cong nội tại của chính đa tạp lớn.
Định nghĩa
Một đa tạp Riemann là một đa tạp trơn với một 2-ten-xơ sao cho
đối xứng, tức là
xác định dương, tức là .
Ví dụ
- Đường tròn cùng với ten-xơ (thường được ký hiệu là ) là một đa tạp Riemann. Nó là đường tròn có bán kính bằng .
Độ dài cung
Với mọi cung (khả vi) , ta định nghĩa độ dài của cung là giá trị . Giá trị này độc lập với cách ta tham số hóa .
Khoảng cách
Nếu là một đa tạp Riemann liên thông (và do đó liên thông cung do là không gian Euclid địa phương), ta có thể định nghĩa khoảng cách Riemann giữa hai điểm như là infimum của các độ dài cung nối và . Không gian metric cảm sinh có chung tô pô với .
Liên thông Levi-Civita
Ứng với mỗi đa tạp Riemann , tồn tại một liên thông tuyến tính trên được gọi là liên thông Levi-Civita.
👁️
0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong hình học vi phân, một **đa tạp Riemann** hoặc **không gian Riemann** là một đa tạp thực trơn _M_ được trang bị với một tích vô hướng _g__p_ xác định dương trên không gian
Trên [[hình cầu, tổng các góc trong của một tam giác cầu không bằng 180° (xem hình học cầu). Mặt cầu không phải là một mặt Euclid, nhưng trong một vùng lân cận đủ nhỏ
Đây là một danh sách một số thuật ngữ được sử dụng trong hình học Riemannian và hình học metric — không bao gồm các thuật ngữ của tô pô vi phân. Các bài viết
**Hình học Riemann** là một nhánh của hình học vi phân nghiên cứu các đa tạp Riemann, đa tạp trơn với _metric Riemann_ hay với một tích trong (inner product) trên không gian tiếp tuyến
phải|nhỏ| Ánh xạ mũ của Trái Đất nhìn từ cực bắc là phép chiếu phương vị đứng (bảo toàn khoảng cách) trong địa lý. Trong hình học Riemann, **ánh xạ mũ** hay **ánh xạ exp**
Trong hình học vi phân, **đẳng cấu thăng giáng** là một đẳng cấu giữa phân thớ tiếp xúc và phân thớ đối tiếp xúc của một đa tạp Riemann, cảm sinh bởi
Giáo trình Hình học vi phần này là một giáo trình về hình học vi phân cổ điển lí thuyết về đường và mặt trong không gian Euclid hai, ba chiều, đồng thời là một
**Georg Friedrich Bernhard Riemann** (phát âm như "ri manh" hay IPA ['ri:man]; 17 tháng 9 năm 1826 – 20 tháng 7 năm 1866) là một nhà toán học người Đức, người đã có nhiều đóng
right|thumb|Hình chữ nhật kẻ ô (ảnh trên) và ảnh của nó dưới ánh xạ bảo giác (ảnh dưới). Có thể thấy rằng ánh xạ các cặp đường vuông góc với nhau tại 90°
nhỏ|phải| Mặt Riemann ứng với "hàm số" . Trong toán học, **mặt Riemann** (hay còn gọi là **diện Riemann**), đặt tên theo nhà toán học Bernhard Riemann, là đa tạp phức một chiều. Mặt Riemann
thumb|Tam giác trắc địa trên mặt cầu.Các đường trắc địa là các cung tròn lớn. nhỏ|Một phần của hai đường dòng trắc địa trên phân thớ tiếp xúc của đường tròn. Lưu ý rằng ta
right|thumb|Bốn phương pháp của tổng Riemann cho diện tích được ước tính dưới đường cong. Phương pháp **phải** và **trái** ước tính điểm cuối phải và trái của mỗi khoảng con, lần
Trong toán học, một **nhóm Lie**, được đặt tên theo nhà toán học người Na Uy Sophus Lie (IPA pronunciation: , đọc như là "Lee"), là một nhóm (group) cũng là một đa tạp khả
**Định lý Hopf–Rinow** là một tập hợp các phát biểu về tính đầy trắc địa của các đa tạp Riemann. Nó được đặt theo tên của Heinz Hopf và sinh viên Willi Rinow, người đã
###### Trong toán học, một **phép đẳng cự** là một phép biến đổi bảo toàn khoảng cách giữa các không gian metric, thường được giả sử là một song ánh. nhỏ| [[Hàm hợp|Hợp của hai
nhỏ|Trong một 2-mặt cầu thông thường, bất kì một vòng kín nào có thể thu nhỏ một cách liên tục thành một điểm trên mặt cầu. Liệu điều kiện này có đặc trưng cho 2-mặt
Trong toán học, một **phép nhúng** khái quát hóa ý tưởng về việc đặt một vật thể vào trong một vật thể khác (một cách phù hợp). ## Tô pô và hình học ### Tô
phải|Một tam giác nhúng trên mặt yên ngựa (mặt [[hyperbolic paraboloid), cũng như hai đường thẳng _song song_ trên nó.]] **Hình học vi phân** là một nhánh của toán học sử dụng các công cụ
**Khâu Thành Đồng** (tên tiếng Anh: **Shing-Tung Yau**, chữ Hán: 丘成桐, sinh ngày 4 tháng 4 năm 1949), là một nhà toán học Hoa Kỳ gốc Hoa, giữ ghế giáo sư William Caspar Graustein tại
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
Trường vectơ được cho bởi các vectơ có dạng (−_y_, _x_) Trong toán học và vật lý, **trường vectơ** là một kết cấu trong giải tích vectơ gán tương ứng một vectơ cho mỗi điểm
**Mikhail Leonidovich Gromov** (; sinh ngày 23 tháng 12 năm 1943) là một nhà toán học mang hai quốc tịch Nga và Pháp, được biết đến với những đóng góp quan trọng trong hình học,
Trong toán học, đặc biệt là trong hình học vi phân, một **liên kết** (cũng gọi là **liên thông**) trên một phân thớ véc tơ là một cách định nghĩa dịch chuyển song song trên
phải|nhỏ|300x300px|Hệ [[Hệ tọa độ cầu|tọa độ cầu được sử dụng phổ biến trong _vật lý_ . Nó gán ba số (được gọi là tọa độ) cho mọi điểm trong không gian Euclide: khoảng cách xuyên
(16 tháng 3 năm 1915 - 26 tháng 7 năm 1997) là một nhà toán học người Nhật Bản với những nghiên cứu nổi bật trong lĩnh vực hình học đại số và lý thuyết
Trong không gian Euclide, một tập hợp được gọi là **lồi** nếu lấy hai điểm tùy ý thuộc vật thể thì đoạn thẳng nối hai điểm ấy cũng sẽ thuộc vật thể đó. Ví dụ,
**Phân tích hình học** (hay còn được gọi là **giải tích hình học**) là một nguyên lý toán học tại giao diện giữa hình học vi phân và các phương trình vi phân. Nó bao
**Lev Genrikhovich Schnirelmann** (hay **Shnirelman**, **Shnirel'man**; ; Sinh ngày 2 tháng 1 năm 1905 – Mất ngày 24 tháng 9 năm 1938) là nhà toán học Liên Xô làm việc trên lý thuyết số, tôpô
nhỏ|280x280px|Hình vòng xuyến với tiết diện tạo thành là một hình vuông. Trong hình học, một **hình xuyến** (hay một **mặt xuyến**) là một mặt xoay được tạo ra bằng cách quay một hình phẳng
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
**Các bài toán thiên niên kỷ** (tiếng Anh: _Millennium Prize Problems_) là bảy bài toán nổi tiếng và phức tạp được lựa chọn bởi Viện Toán học Clay vào ngày 24 tháng 5 năm 2000,
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
Trong toán học, cụ thể là ngành giải tích phức, một **hàm phân hình** trên một tập con mở của mặt phẳng phức là một hàm số chỉnh hình trên toàn bộ _ngoại trừ_ một
**Grigori Yakovlevich Perelman** (, sinh ngày 13 tháng 6 năm 1966), đôi khi còn được biết đến với tên **Grisha Perelman**, là một nhà toán học người Nga có nhiều đóng góp đến hình học
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
nhỏ|Không gian mà chú cua [[còng này (có một càng to hơn bên kia nên là một hình không đối xứng) sinh sống là một mặt Mobius. Lưu ý rằng chú cua biến thành hình
right|thumb|upright=1.35|alt=Graph showing a logarithmic curve, crossing the _x_-axis at _x_= 1 and approaching minus infinity along the _y_-axis.|[[Đồ thị của hàm số|Đồ thị của hàm logarit cơ số 2 cắt trục hoành tại và đi
Trong hình học vi phân, một **phép ngập** là một ánh xạ khả vi giữa các đa tạp vi phân sao cho tại mọi điểm, vi phân của nó là một toàn ánh. Đây là
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
phải|[[Tenxơ ứng suất Cauchy, một tenxơ hạng hai. Thành phần của tenxơ, trong hệ tọa độ Descartes 3 chiều, tạo thành ma trận
**Friedrich Ernst Peter Hirzebruch** (17 tháng 10 năm 1927 – 27 tháng 5 năm 2012) là một nhà toán học người Đức, nghiên cứu về tô pô học, đa tạp phức và hình học đại
**Toán học của thuyết tương đối rộng** là mô hình chứa đựng cấu trúc và kỹ thuật toán học được sử dụng để nghiên cứu và thiết lập lên thuyết tương đối rộng của Einstein.
Trong toán học, **bó** là một khái niệm cho phép mô tả thông tin gắn với các tập mở của một không gian tô pô (thí dụ như các hàm liên tục xác định trên
nhỏ|phải|Chai Klein nhỏ|phải|[[Felix Klein (1849 - 1925)]] Trong toán học, **chai Klein** (hay **bình Klein**) là một ví dụ cho **mặt không định hướng**, nói cách khác, đó là một bề mặt (một **đa tạp**
Trong toán học, **hình học phức** là ngành nghiên cứu về các đa tạp phức, các đa tạp đại số phức và các hàm biến phức. Các phương pháp chủ đạo bao gồm hình học
**Gregorio Ricci-Curbastro** (; sinh ngày 12 tháng 1 năm 1853 - mất ngày 6 tháng 8 năm 1925) là một nhà toán học người Ý được sinh ra ở Lugo di Romagna. Ông được biết
phải|nhỏ|429x429px| [[Hendrik Lorentz|Hendrik Antoon Lorentz (1853 bóng1928), sau đó nhóm Lorentz được đặt tên. ]] Trong vật lý và toán học, **nhóm Lorentz** là nhóm của tất cả các phép biến đổi Lorentz của không