✨Mặt Mobius

Mặt Mobius

nhỏ|Không gian mà chú cua [[còng này (có một càng to hơn bên kia nên là một hình không đối xứng) sinh sống là một mặt Mobius. Lưu ý rằng chú cua biến thành hình ảnh phản chiếu gương của chính nó sau mỗi vòng lặp quanh mặt Mobius. Việc vũ trụ của chúng ta có tồn tại tính chất tương tự như vậy không phải là bất khả thi, xem lỗ sâu không định hướng.]] Mặt Mobius hay dải Mobius (Mobius band/ Mobius strip), về toán học là một khái niệm topo cơ bản về một dải chỉ có một phía và một biên. Lúc đầu chỉ như một trò chơi vì xuất xứ từ một dải băng giấy (do Mobius công bố) được dán dính 2 đầu sau khi lật ngược một đầu 1 hoặc 2 lần. Về sau các nhà toán học nâng lên thành lý thuyết, lập công thức tính toán. Không chỉ vậy, lý thuyết về dải Mobius còn được ứng dụng vào thực tế trong các lĩnh vực như: kiến trúc, xây dựng,... Ngạc nhiên hơn, dải Mobius còn được ứng dụng vào nghệ thuật, bao gồm: Âm nhạc (Bach), hội họa (M.C. Escher), điêu khắc, kim hoàn, thủ công.v.v.

Đây là một mô hình có thể dễ dàng được tạo ra bằng cách dùng một dải giấy và cho xoắn một nửa và sau đó dán hai đầu của dải với nhau để tạo thành một vòng. Trong không gian Euclid có hai loại dải Mobius tùy thuộc vào chiều xoắn: thuận chiều kim đồng hồ và ngược chiều kim đồng hồ.

Sơ lược

:Mặt Mobius được đặt theo tên nhà toán học và thiên văn học người Đức August Ferdinand Möbius tìm ra vào tháng 9 năm 1858, trong quá trình nghiên cứu các đa diện, mặc dù nhà toán học người Đức Johann Benedict Listing đã nghiên cứu nó độc lập từ trước đó ít lâu vào tháng 7 năm 1858.

:Mặt Mobius không phải là một bề mặt chỉ có duy nhất một dạng hình học (tức là chỉ có một kích thước và hình dạng nhất định), chẳng hạn như dải giấy được xoắn nửa vòng như hình minh hoạ. Do đó, các nhà toán học đã nghiên cứu mặt Mobius (ngầm hiểu là Mobius đóng) như bất kỳ bề mặt nào có hình học topo tương đương với dải này.

:Biên của nó là một đường cong đơn đóng, có thể là topo hình học của một vòng tròn. Điều này cho thấy có rất nhiều các phiên bản hình học của các dải Mobius như thể mỗi bề mặt này đều có một hình dạng và kích thước xác định.

:Thí dụ, với bất kỳ hình chữ nhật đóng, có chiều dài L và chiều rộng W, đều có thể được dán lại để tạo một dải Mobius (bằng cách dán một cạnh với cạnh đối diện sau khi được đảo ngược 180 độ). Một trong số chúng có thể là những mô hình trơn trong không gian 3 chiều, nhưng một số khác lại không (xem phần bên dưới). Tuy nhiên, một ví dụ khác là dải Mobius mở đầy đủ (xem phần bên dưới). Theo hình học topo, điều này là hơi khác so với những dải Mobius đóng thông thường, trong khi bất kỳ dải Mobius đều mở và không có biên.

:Không phức tạp lắm để tìm phương trình đại số cho các lời giải có hình học topo của một dải Mobius, nhưng nói chung các phương trình này không mô tả cùng một hình dạng hình học tương tự như mô hình có giấy được xoắn đã nêu trên. Đặc biệt, mô hình giấy xoắn là một bề mặt có thể khai triển được vì nó không có độ cong Gauss (độ cong toàn phần). Một hệ thống phương trình vi phân đại số mô tả mô hình loại này được xuất bản vào năm 2007 cùng với những giải pháp số đi kèm..

Đặc trưng Euler của dải Mobius là bằng 0.

Tính chất đặc biệt của dải Mobius

Dải Mobius có một số tính chất đặc biệt như sau:

Nếu vẽ một đường bắt đầu từ 1 điểm ở giữa dải Mobius sẽ gặp lại chính nó nhưng ở phía bên kia dải này. Nếu tiếp tục đường vẽ sẽ gặp lại điểm bắt đầu và nó sẽ có đội dài gấp 2 lần chiều dài của dải ban đầu. Đường cong này liên tục duy nhất chứng tỏ rằng các dải Mobius chỉ có một biên. Nếu cắt một dải Mobius dọc theo đường chính giữa sẽ cho ta một dải dài với đầy đủ 2 xoắn, chứ không phải là hai dải riêng biệt như ta nghĩ, kết quả là dải vừa tạo ra không còn là một dải Mobius. Điều này xảy ra bởi vì dải gốc chỉ có một cạnh nhưng cạnh này lại có chiều dài gấp đôi chiều dài của nó. Vết cắt tạo ra thêm 1 cạnh riêng biệt, mà một nửa của nó ở mỗi bên cây kéo, ta có được 1 dải mới dài hơn. Nếu cắt dải này dọc theo đường chính giữa của nó giống y như vậy lần nữa sẽ tạo ra hai dải quấn quanh nhau, đều có đầy đủ hai xoắn. Nếu dải được cắt dọc theo chiều dài khoảng một phần ba cách từ các cạnh, nó sẽ tạo ra hai dải: Một dải Mobius nhỏ hơn - đó là dải nằm giữa, có chiều rộng bằng 1/3 và chiều dài tương tự như dải ban đầu. Còn lại là một dải dài hơn và có đầy đủ 2 xoắn - đây là dải nằm dọc suốt 2 cạnh của dải ban đầu, và nó bao gồm 1/3 chiều rộng và hai lần chiều dài của dải gốc. Những dải tương tự khác có thể thu được bằng cách tương tự khi xoắn nó với số lần nửa vòng là hai hoặc nhiều hơn thay vì chỉ một lần như trước. Ví dụ, một dải với ba nửa xoắn, khi chia đôi theo chiều dọc, trở thành một dải gắn vào nhau tạo thành một nút chia ba. (Nếu nút thắt này được tách ra, dải được tạo thành bằng cách thêm vào 8 lần nửa xoắn sẽ tạo ra 1 nút thắt đơn.) Một dải với N nửa xoắn, khi bị chia đôi, trở thành một dải với N + 1 xoắn đầy đủ. Cho nó xoắn thêm và nối các đầu lại sẽ được hình gọi là vòng paradromic. Một dải với một số lẻ của nửa xoắn, chẳng hạn như dải Mobius, sẽ chỉ có một mặt và một biên. Một dải xoắn một số chẵn lần sẽ có hai mặt và hai biên. Nếu một dải với một số lẻ của nửa xoắn được chia đôi bề rộng dọc theo chiều dài của nó, nó sẽ tạo ra một dải đơn dài hơn, với nhiều gấp hai lần nửa xoắn so với bản gốc. Ngược lại, nếu một dải với một số chẵn nửa xoắn được cắt một nửa dọc theo chiều dài, nó sẽ tạo ra hai dải móc vào nhau, đều có cùng số lần xoắn như bản gốc.

Hình học và Topo

nhỏ|phải|Đồ thị tham số hoá theo dấu tia của dải Mobius nhỏ|phải|Để biến một hình chữ nhật thành một dải Mobius, cần ghép các cạnh A theo chiều mũi tên như hình vẽ

Mặt Mobius là một tập con chính tắc trong R3 có được bằng cách tham số hoá:

:x(u,v)= \textstyle \left(1+\frac{1}{2}v \cos \frac{1}{2}u\right)\cos u

:y(u,v)= \textstyle \left(1+\frac{1}{2}v\cos\frac{1}{2}u\right)\sin u

:z(u,v)= \textstyle \frac{1}{2}v\sin \frac{1}{2}u

trong đó và . Công thức này cho ta dải Mobius có chiều rộng 1 đơn vị, vòng có bán kính 1 nằm trong mặt phẳng tọa độ Oxy với tâm đặt tại gốc tọa độ . Biến u thay đổi vòng quanh dải mobius trong khi v thay đổi chạy vòng quanh biên.

Trong toạ độ cầu , dải Möbius mở không biên được biểu diễn bằng công thức sau:

:\log(r)\sin\left(\frac{1}{2}\theta\right)=z\cos\left(\frac{1}{2}\theta\right).

Dải Mobius chữ nhật đầy trong không gian 3 chiều

Nếu một dải Mobius trơn trong không gian ba chiều được gọi là một dải Mobius dạng chữ nhật - thì nó phải được tạo ra từ việc đồng nhất hai cạnh đối diện của một hình chữ nhật – điều này xảy ra nếu tỉ lệ độ dài của hình chữ nhật lớn hơn căn bậc hai 3. (Lưu ý rằng đây là tỉ lệ với độ dài cạnh bên ngắn hơn của hình chữ nhật – tức chiều rộng). Do vậy, nếu tỉ lệ này nhỏ hơn hoặc bằng căn bậc hai của 3, một nhúng trơn của một dải Mobius chữ nhật trong không gian 3 chiều sẽ không xảy ra. Nếu tỉ lệ độ dài tiến tới giới hạn tỉ lệ của \sqrt{3} theo chiều giảm dần, bất kỳ dải Mobius chữ nhật trong không gian 3 chiều dường như đều tiến đến một hình dạng trong giới hạn có thể được coi như một dải của ba tam giác đều, nếu ta gấp đỉnh của một trong số chúng xuống sẽ tạo được một hình tam giác đều trong không gian 3 chiều. *Nếu có dải Mobius trong không gian 3 chiều thì nó chỉ có khả vi liên tục cấp 1 (ký hiệu là: C1), tuy nhiên, sau này các định lý của Nash-Kuiper cho thấy rằng không tồn tại giới hạn dưới của dải Mobius.

Hình học Topo

Trong topo, dải Mobius được định nghĩa giống như hình vuông với dòng đầu của và dòng dưới được xác định bởi quan hệ với như trong sơ đồ bên phải.

Một bài viết ít được sử dụng của dải Mobius là thương quỹ đạo đa tạp của một xuyến.. Một hình xuyến có thể được xây dựng như hình vuông với các cạnh được xác định là (nối từ trái sang phải) và (nối từ dưới lên trên).

Nếu nó cũng được xác định bởi , thì ta sẽ có được một dải Mobius. Đường chéo của hình vuông (những điểm (x,x) có hai tọa độ giống nhau) trở thành biên của dải Mobius, và mang một cấu trúc quỹ đạo đa tạp, trong đó hình học tương ứng với "ảnh phản xạ" - trắc địa (đường thẳng) trong dải Mobius phải chiếu ra khỏi mép sau vào trong dải. Về mặt ký hiệu, nó được viết là T2/S2 – thương 2 xuyến bởi các hoạt động nhóm của nhóm đối xứng trên hai ký tự (chuyển đổi tọa độ), và nó có thể được coi là không gian cấu hình của hai điểm bất kỳ trên vòng tròn, có thể là cùng (cạnh tương ứng với các điểm là như nhau), với các đường gờ tương ứng với hai điểm đặt trên vòng tròn.

Dải Mobius là đa tạp compact hai chiều (tức là một bề mặt) có biên. Nó là một ví dụ tiêu biểu của một bề mặt không định hướng. Trong thực tế, dải Mobius là hình ảnh thu nhỏ của hiện tượng topo của sự không định hướng. Điều này là do:

  • Hình dạng hai chiều (bề mặt) là những hình ít chiều nhất nên dễ hiểu là không thể định hướng được
  • Dải Mobius là bề mặt duy nhất có topology với mọi tập con của tất cả các bề mặt không định hướng.

Dải Mobius cũng là một ví dụ điển hình được sử dụng để minh họa cho khái niệm toán học của không gian phân thớ chính. Cụ thể, nó là một phân thớ không tầm thường trên hình tròn S1 với một thớ là đoạn đơn vị, I = [0,1]. Chỉ cần nhìn vào cạnh của dải Mobius ta sẽ thấy 1 bó 2 điểm không tầm thường (hoặc Z2) quanh S1.

Đồ họa máy tính

Một cấu trúc đơn giản của dải Mobius có thể được tạo ra bởi phương pháp số hoá, bằng cách nối kết một tập các đoạn thẳng hay các trục đứng với nhau và xoắn đều theo một đường tròn hoặc elip. Theo Charles Joseph Matthews, dải Mobius được coi là mặt 3 chiều không có độ dày. Vì thế, khi có độ dày, nó sẽ trở thành dạng lăng trụ xoắn trong không gian 3 chiều.

Ngoài ra, còn có thể dùng mô hình sau để xây dựng một mặt Mobius tổng quát:

Lấy một dải hình chữ nhật. Xoay nó xung quanh một điểm cố định không nằm trong mặt phẳng chứa nó. Tại mỗi bước, cũng xoay dải dọc theo một đường trong mặt phẳng của nó (đường thẳng chia đôi dải) và trực giao với bán kính quỹ đạo chính. Bề mặt được tạo ra như cách trên là dải Mobius. Lấy một dải Mobius và cắt nó dọc theo đường giữa của dải. Điều này sẽ tạo thành một dải mới, được tạo thành bằng cách thêm một hình chữ nhật vào dải cũ trong khi xoay cả đầu và đuôi của hình chữ nhật đó cùng lúc. Nếu lại cắt dải mới này theo đường giữa của nó 1 lần nữa, sẽ tạo thành 2 dải lồng vào nhau.

Dải Mobius mở

Dải Mobius mở được hình thành bằng cách xóa các biên (boundary) của dải Mobius chuẩn, được xây dựng từ tập } bằng cách xác định các điểm (0,y) và (1,1−y) với mọi

Ngoài ra, ta cũng có thể được xây dựng như một bề mặt đầy đủ, bằng cách phân chia mặt phẳng R2 trên đó xác định y trong đoạn 0 ≤ y ≤ 1 và từ (x,0) tới (-x,1) với mọi x trong R (tập hợp các số thực). Ta thấy trong không gian metric hình thành dải Mobius mở trên mặt phẳng đầy đủ (geodesically) (tức là, có độ cong Gauss bằng 0 ở khắp mọi nơi). Đây là metric duy nhất trên dải Mobius, thỏa trên cả không gian phẳng và đầy đủ.

Như các mặt phẳng và các hình trụ mở, dải Mobius mở nhận không chỉ có một metric đầy đủ chứa các độ cong hằng bằng 0, mà còn chứa metric đầy đủ các độ cong hằng âm = -1. Một cách để thấy điều này là bắt đầu với (Poincaré) mô hình nửa mặt phẳng trên của mặt phẳng hyperbol ℍ, cụ thể là ℍ = {(x,y) ∈ ℝ2 | y > 0} với (dx2 + dy2) / y2 được cho trong metric Riemann.

Các phép đẳng cự được định hướng bảo toàn trong metric này là tất cả các ánh xạ : f: ℍ → ℍ có dạng f(z):= (az + b) / (cz + d) với a, b, c, d là các số thực thoả ad - bc = 1. z là một số phức với Im(z) > 0, {z ∈ ℂ | Im(z) > 0}. Một phép đẳng cự đổi ngược hướng g của ℍ được là g(z):= -conj(z), với conj(z) là ký hiệu các số phức liên hợp của z. Điều này cho ta biết các ánh xạ h: ℍ → ℍ với h(z):= -2⋅conj(z) là một phép đẳng cự đổi ngược hướng của ℍ tạo ra một nhóm tuần hoàn vô hạn G của phép đẳng cự. Thương của ℍ / G của hai nhóm này có thể dễ dàng tính được là một dạng hình học của dải Mobius. Nhưng cũng dễ dàng để kiểm tra phép chia trên tạo thành một không gian đầy đủ và không compắc, với độ cong âm hằng= -1.

Không gian chứa các đường thẳng không định hướng đồng phôi với dải Mobius mở .

Đặt L(θ) là đường thẳng trong mặt phẳng toạ độ trục x dương một góc θ Với mỗi L(θ) có một họ P(θ) của tất cả các đường thẳng trong mặt phẳng đó trực giao với L(θ). Theo topo, họ các P(θ)chỉ là một đường thẳng (vì mỗi đường thẳng trong P(θ) cắt đường L(θ) tại một điểm duy nhất). Vì vậy, khi θ tăng trong phạm vi 0° ≤ θ < 180°, đường thẳng L(θ) represents a line's worth of distinct lines in the plane. Nhưng khi θ tiến tới 180°, L(180°)đồng nhất với L(0), vì vậy P(0°) và P(180°) của các đường thẳng trực giao cũng thuộc cũng một họ. Đường L(0°) khi trở thành đường L(180°) lại đi theo hướng ngược lại.

Tất cả các đường trong các mặt phẳng tương ứng với đúng một đường thẳng trong một họ P(θ), cho một θ, từ 0° ≤ θ < 180°, và P(180°) đồng nhất P(0°) nhưng theo hướng ngược lại. Điều này đảm bảo rằng không gian của tất cả các đường trong mặt phẳng – là hội của tất cả các L(θ) từ 0° ≤ θ < 180° — là một dải Mobius mở.

Các chuyển động cứng nhắc trong mặt phẳng đã cho tạo ra song ánh trong không gian đường trong mặt phẳng của chính nó, tự đồng cấu với không gian các đường thẳng. Nhưng không tồn tại metric trong không gian các đường thẳng bất biến dưới tác động của các nhóm tự đồng cấu.

Kết quả cuối cùng là các dải Mobius có một nhóm Lie tự nhiên 4 chiều tự đồng cấu (được tạo ra từ những chuyển động cứng của mặt phẳng), nhưng mức đối xứng cao không được thể hiện dưới nhóm đẳng cự của bất kỳ chuẩn đo nào.

Dải Mobius có biên tròn

Cạnh hay biên của một dải Mobius là đồng phôi (topo tương đương) với một vòng tròn. Theo phép nhúng thường của dải trong không gian Euclide như ở trên, biên không phải là một vòng tròn. Tuy nhiên, nó có thể nhúng một dải Mobius trong không gian ba chiều để các biên là tròn như một vòng tròn. Tham khảo chi tiét hơn tại "Geometry and the imagination"..

::Một cách hình học hơn để có được một phép nhúng như vậy là bắt đầu bằng một chai Klein tối thiểu nhúng trong mặt cầu 3 chiều và lấy một nửa của nó, đó là một dải Mobius được nhúng trong không gian 4 chiều; Dải này gọi là M hay có tên là '"dải Mobius Sudanese"'. (Đây là tên gọi kết hợp của 2 nhà toán học Topo, Sue Goodman và Daniel Asimov). Áp dụng phép chiếu lập thể vào M và đặt nó trong không gian 3 chiều, như có thể thấy ở đây cũng như trong các hình ảnh dưới đây. (Một số người đã không dán nhãn chính xác hình ảnh lập thể của "Sudanese" trong không gian 3 chiều, nhưng dải Sudanese thực sự hình tượng hơn như vậy, với độ đối xứng cao trong mặt phẳng Riemann: nhóm đẳng cự của nó có chứa SO(2) cùng với 1 phương trình tham số hóa phổ biến.)

Để dễ dàng thấy điều này, ta xét phép nhúng vào quả cầu S3 là một tập hợp con của R4.

Tham số hoá phép nhúng bằng {z1(η,φ), z2(η,φ)}, với :z_1 = \sin\eta\,e^{i\varphi} :z_2 = \cos\eta\,e^{i\varphi/2}.

Ở đây ta ký hiệu số phức trong R4 như trong C2. Tham số η chạy từ 0 đến π và φ là khoảng từ 0 đến 2π. Khi | z1 |2 + | z2 |2 = 1 thì phép nhúng thuộc hoàn toàn vào S3. Biên của dãy là | z2 | = 1 (tương ứng với η=(0,π)), rõ ràng là 1 hình tròn trong không gian 3 chiều.

Để có được một phép nhúng của dải Mobius trong R3 ánh xạ S3 vào R3 thông qua một phép chiếu lập thể. Điểm chiếu có thể là bất kỳ điểm nào trên S3 mà không nằm trên phép nhúng dải Mobius (quy tắc này không áp dụng cho tất cả những điểm chiếu thông thường). Chọn \left{1/\sqrt{2},i/\sqrt{2}\right}. Phép chiếu lập thể ánh xạ vòng để kết nối và bảo toàn biên của dải. Kết quả là một dải Mobius trơn được nhúng vào R3 với một cạnh tròn và không có phần tự giao.

Các dạng hình học liên quan

*Một đối tượng hình học "lạ" liên quan chặt chẽ với Mobius là chai Klein. Một chai Klein có thể được tạo ra bằng cách nối hai dải Mobius lại với nhau dọc theo các cạnh của chúng. Tuy nhiên điều này lại không thể được thực hiện trong không gian Euclid ba chiều thông thường, mà không tạo nút tự giao.

*Một dạng đa tạp khác liên quan tới Mobius là mặt phản xạ thực. Nếu một đĩa tròn được cắt ra khỏi mặt phản xạ thực, những gì còn lại sẽ là một dải Mobius. Hay nói cách khác, nếu dán 1 đĩa tròn vào một dải Mobius khi biết biên của nó, ta sẽ được 1 mặt phản xa thực. Để dễ hình dung điều này, tốt nhất là bạn hãy làm biến dạng biên của dải Mobius thành 1 vòng tròn bình thường (xem ở trên). Mặt phản xạ thực, cũng như chai Klein, không thể được tạo ra trong không gian 3 chiều mà không có nút tự giao.

*Trong lý thuyết đồ thị, thang Mobius là một biểu đồ khối có liên quan chặt chẽ với dải Mobius. Vào năm 1968, Gonzalo Vélez Jahn (UCV, Caracas, Venezuela) phát hiện ra thể ba chiều với đặc điểm Möbius đặc trưng, sau đó đã được mô tả thành vòng lăng trụ bởi Martin Gardner – sau này là khối đa diện.

Ứng dụng

Âm thanh

Một số ứng dụng kỹ thuật cho các dải Mobius như dải Mobius được áp dụng nguyên lý như băng tải kéo dài trên toàn bộ diện tích bề mặt của vành đai nên có cùng một lượng hao mòn. Chẳng hạn như băng ghi âm liên tục được thiết kế có các vòng lặp (tăng gấp đôi thời gian ghi âm). Mobius phổ biến trong sản xuất máy in vi tính trên vải và băng rôn.

Dải Mobius là không gian cấu hình của hai điểm có thứ tự trên một vòng tròn. Do đó, về mặt lý thuyết âm nhạc, không gian của tất cả các hợp hai nốt âm, được biết đến như những cặp, đều có hình dạng của một dải Mobius, điều này và khái quát đến các điểm là một ứng dụng quan trọng của lý thuyết âm nhạc.

Vật lý / điện công nghệ

Lý thuyết về Mobius ứng dụng khá rộng trong lĩnh vực vật lý, tạo ra nhiều thiết bị có tính ứng dụng cao, có thể liệt kê:

như một compact cộng hưởng với tần số cộng hưởng mà là một nửa của giống nhau xây dựng cuộn tuyến tính như một điện trở giảm cảm ứng như các chất siêu dẫn nhiệt độ chuyển tiếp cao Điện trở Mobius là một phần tử mạch điện tử hủy bỏ cảm kháng của chính nó. Nikola Tesla được cấp bằng sáng chế công nghệ tương tự vào năm 1894: "cuộn nam châm điện" đã được sử dụng cùng với hệ thống phát điện toàn cầu mà không cần dây.

Hóa học / công nghệ nano

Trong hóa học cũng có nhiều ứng dụng quan trọng của Mobius:

như nút thắt phân tử với các đặc tính đặc biệt (Knotane [2], chirality) là công cụ phân tử như khối lượng lá graphit (nano than chì) với các đặc tính điện tử mới, như xoắn ốc từ tính trong một loại đặc biệt của aromaticity: Mobius aromaticity hạt tích điện trong từ trường của trái đất có thể di chuyển trên một dải Mobius các cyclotide (protein vòng) Kalata B1, chất hoạt động của cây Oldenlandia affinis, có topo Mobius cho đường trục kết hợp của hai hay nhiều amino acid tạo thành chuỗi

Kiến trúc

Trong kiến trúc, Peter Eisenman có lẽ là người tiên phong phiên chuyển (tuy còn sơ khai) dạng Mobius vào toà nhà "Max Reinhardt Haus". Ở đây tác giả đã gọt phẳng phần tiếp đất nên đã làm hỏng tầm nhìn liên tục của hình Mobius. Mô hình toán học của dải Mobius không được đưa trực tiếp vào công trình nhưng nó lại được khái niệm hoá, và được nhìn thấy trong từng thành phần kiến trúc, chẳng hạn hệ thống ánh sáng, cầu thang và lối đi vào ra của ngôi nhà.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
nhỏ|Không gian mà chú cua [[còng này (có một càng to hơn bên kia nên là một hình không đối xứng) sinh sống là một mặt Mobius. Lưu ý rằng chú cua biến thành hình
thumb|right| Mặt yên ngựa (mặt hyperbolic paraboloid). thumb|right|Chai Klein trong không gian 3 chiều. Trong toán học, cụ thể là trong topo, một **mặt** là một đa tạp topo 2 chiều. Ví dụ quen thuộc
nhỏ|phải|Chai Klein nhỏ|phải|[[Felix Klein (1849 - 1925)]] Trong toán học, **chai Klein** (hay **bình Klein**) là một ví dụ cho **mặt không định hướng**, nói cách khác, đó là một bề mặt (một **đa tạp**
**Christian Felix Klein** (25 tháng 4 năm 1849 – 22 tháng 6 năm 1925) là nhà toán học người Đức, được biết đến với những nghiên cứu của ông trong lý thuyết nhóm, lý thuyết
Trên [[hình cầu, tổng các góc trong của một tam giác cầu không bằng 180° (xem hình học cầu). Mặt cầu không phải là một mặt Euclid, nhưng trong một vùng lân cận đủ nhỏ
thumb|Möbius plane: Định lý Bundle Trong hình học, **Định lý Bundle** là một định lý phát biểu về quan hệ của sáu đường tròn và tám điểm trong mặt phẳng Euclid. Tổng quát hơn nó
phải|nhỏ|250x250px| [[Mặt Mobius|Dải Mobius (mở rộng vô hạn) là một phân thớ đường trên đường tròn **S**1. Trong một lân cận địa phương tại mọi điểm của **S**1, nó đồng phôi với _U_×**R** (trong đó
nhỏ|Dưới con mắt tôpô học, cái cốc và cái vòng là một **Tô pô** hay **tô pô học** có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm _topos_ (nghĩa là
**_Mulholland Drive_** (hay cách điệu hóa **_Mulholland Dr._**) là một bộ phim điện ảnh thuộc thể loại neo-noir giật gân, bí ẩn và tâm lý của Mỹ và Pháp ra mắt năm 2001 do David
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
**Trận Villers-Bocage** là một trận đánh trong chiến trường Normandy giữa quân đội Đồng Minh và Đức Quốc xã ngày 13 tháng 6 năm 1944. Trong khi quân Đồng Minh đang mở cuộc hành quân
**Stan Lee** (28 tháng 12 năm 1922 - 12 tháng 11 năm 2018) tên khai sinh **Stanley Martin Lieber** là một nhà văn, họa sĩ, chủ bút, chỉ đạo sản xuất, người dẫn chương trình,
**Bernhard Christian Gottfried Tollens** (30 tháng 7 năm 1841 - 31 tháng 1 năm 1918) là một nhà hóa học người Đức. ## Tiểu sử Tollens theo học tại trường Gelehrtenschule des Johanneums ở Hamburg
**Maurits Cornelis Escher** (17 tháng 6 năm 1898 – 27 tháng 3 năm 1972) là một nghệ sĩ đồ họa người Hà Lan, người đã tạo ra các bức tranh khắc gỗ, bản in thạch
nhỏ|192x192px|Tam giác Penrose **Tam giác Penrose**, còn được biết đến là **Penrose tribar,** hoặc **Impossible tribar**, là một hình tam giác bất khả thi (Vật thể bất khả thi). Nó được tạo ra lần đầu
**_Loki_** là một bộ phim truyền hình dài tập Mỹ ra mắt năm 2021, phát độc quyền trên nền tảng trực tuyến Disney+ của đạo diễn Michael Waldron. Phim dựa trên nhân vật cùng tên
**_Người Kiến và Chiến binh Ong: Thế giới Lượng tử_** (tựa gốc tiếng Anh: **_Ant-Man and the Wasp: Quantumania_**) là bộ phim siêu anh hùng của Mỹ công chiếu năm 2023 dựa trên các nhân
**Darkseid** (phiên âm tiếng Anh: /'dɑrk.saɪd/) là một siêu ác nhân xuất hiện trong truyện tranh Mỹ được xuất bản bởi DC Comics. Nhân vật này được tạo ra bởi nhà văn-họa sĩ Jack Kirby
**THE9** (hay **THE NINE/九的/无限少女X**) là nhóm nhạc nữ Trung Quốc, nhóm được thành lập vào ngày 30/05/2020 thông qua show sống còn _Thanh xuân có bạn (mùa 2) (Idol producer 3)_. Nhóm gồm 9 thành
phải|nhỏ|429x429px| [[Hendrik Lorentz|Hendrik Antoon Lorentz (1853 bóng1928), sau đó nhóm Lorentz được đặt tên. ]] Trong vật lý và toán học, **nhóm Lorentz** là nhóm của tất cả các phép biến đổi Lorentz của không
right|thumb|Hình chữ nhật kẻ ô (ảnh trên) và ảnh của nó dưới ánh xạ bảo giác f (ảnh dưới). Có thể thấy rằng f ánh xạ các cặp đường vuông góc với nhau tại 90°
**_Deadpool và Wolverine_** là một bộ phim siêu anh hùng hài hước của Mỹ dựa trên nhân vật Deadpool của Marvel Comics, bộ phim được sản xuất bởi Marvel Studios và Maximum Effort và được
**Heinrich Louis d'Arrest** (13 tháng 8 năm 1822 – 14 tháng 6 năm 1875;  ) là một nhà thiên văn người Đức, sinh ra ở Berlin. Tên của ông đôi khi được gọi là **Heinrich
**Nhím Sonic** (tiếng Anh: _Sonic the Hedgehog_, tiếng Nhật: ソニック-ザ-ヘッジホッグ, _Sonikku-za-Hejiihoggu_) là một nhân vật game, là nhân vật chính trong loạt game được phát hành bởi Sega, ngoài ra còn xuất hiện trong các
**Doraemon**, nhân vật chính trong loạt manga và anime cùng tên, sở hữu rất nhiều các loại **bảo bối** hay cất giữ trong chiếc túi không đáy. Một số trong những bảo bối này được
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
Vũ khí vệ tinh [[Ion Cannon của Global Defense Initiative]] **_Nhánh Tiberian_** là một phân nhánh trò chơi chiến lược thời gian thực thuộc _thương hiệu Command & Conquer_ của Westwood Studios và Electronic Arts.
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
Các hệ sinh thái rừng mưa nhiệt đới trên toàn Trái Đất họp thành "_khu sinh học rừng mưa nhiệt đới_". **Biôm** hay **khu sinh học** là thuật ngữ dịch từ tiếng Anh **"biome"** (phiên
nhỏ|phải|Các đoạn thẳng trong không gian afin 2 chiều. Trong toán học, **không gian afin** (hoặc **không gian aphin**) là một cấu trúc hình học tổng quát tính chất của các đường thẳng song song
Trong Toán học, Vật lí và kĩ thuật, **vectơ** hay **hướng lượng** (theo phiên âm Hán Việt) (tiếng Anh: _vector_) là một đoạn thẳng có hướng. Đoạn thẳng này biểu thị phương, chiều và độ
phải|nhỏ|200x200px|Mặt phẳng giả hữu hạn bậc 2, chứa 4 "điểm" và 6 "đường". Các đường có cùng màu là "song song". Tâm của hình không phải là "điểm" của mặt phẳng affin này, vì thế
**Truyện tranh** hay **mạn họa** là một phương tiện được sử dụng để diễn đạt ý tưởng bằng hình ảnh, thường kết hợp với văn bản hoặc thông tin hình ảnh khác. Thông thường, nó
**_Nhà giả kim_** (tựa gốc tiếng Bồ Đào Nha:_ O Alquimista_) là tiểu thuyết được xuất bản lần đầu ở Brasil năm 1988, và là cuốn sách nổi tiếng nhất của nhà văn Paulo Coelho.
**Army Men** là dòng game do hãng The 3DO Company làm, và sau này do Global Star Software đảm nhiệm. Dòng game này dựa trên cuộc chiến tranh khác nhau giữa bốn phe chính của
thumb|right|upright=1.5|Mặt trước và sau của một chiếc [[Fairphone 2 với phần vỏ trong suốt, cho thấy thiết kế mô đun. Các bộ phận khác nhau được đánh dấu trong bức ảnh được ghi chú.|alt=A image
Trong lý thuyết số, **tích Euler** là dạng khai triển chuỗi Dirichlet thành tích vô hạn được đánh chỉ số bởi các số nguyên tố. Tích gốc xuất hiện trong bài chứng minh công thức
**_Yankee_** (cách điệu **_YANKEE_**) là album phòng thu thứ hai của nghệ sĩ Nhật Bản Kenshi Yonezu và album thứ tư của anh. Album được phát hành ngày 23 tháng 4 năm 2014, với buổi
Trong toán học, một **nhóm Lie**, được đặt tên theo nhà toán học người Na Uy Sophus Lie (IPA pronunciation: , đọc như là "Lee"), là một nhóm (group) cũng là một đa tạp khả
## Định nghĩa Nhãn sinh thái được định nghĩa khác nhau: Theo tổ chức thương mại thế giới WTO và Ngân hàng thế giới WB thì: _Nhãn sinh thái là một loại nhãn được cấp
**_Command & Conquer: Renegade_** là game bắn súng góc nhìn người thứ nhất và thứ ba được phát triển bởi Westwood Studios và là một phần của _dòng game Command & Conquer_. Đây là trò
là một nhạc sĩ, nhà soạn nhạc, nhà cải biên nhạc, nhạc trưởng, người chỉ huy dàn nhạc và nghệ sĩ dương cầm người Nhật Bản. Nguyên quán của ông ở Shimonoseki thuộc tỉnh Yamaguchi[http://www.kaoru-wada.com/prof.php]
phải|nhỏ|Hình ảnh một hệ thống băng tải vận chuyển lưu huỳnh **Băng tải** là một thiết bị cơ khí dùng để vận chuyển vật liệu, hàng hóa từ vị trí này đến vị trí khác.
là tập thứ 12 của bộ anime truyền hình _Shin Seiki Evangelion_, do Gainax sáng tạo. Tập phim phát sóng lần đầu trên TV Tokyo vào ngày 20 tháng 12 năm 1995. Anno Hideaki và
**Spinner** là thuật ngữ chung để chỉ những chiếc ô tô bay giả tưởng được sử dụng trong phim điện ảnh _Blade Runner_. Spinner có thể được sử dụng như một phương tiện đi trên
thumb|Mô phỏng bằng các [[thanh Cuisenaire về bản chất lũy thừa hoàn hảo của 4, 8, và 9]] Trong toán học, **lũy thừa hoàn hảo** là số tự nhiên bằng tích của các phần tử
Trong hình học, hệ **tọa độ Barycentric** (Còn gọi là Hệ tọa độ tỉ cự) là một hệ tọa độ trong đó vị trí của một điểm trong một đa diện, được xác định là
nhỏ| Các ma trận [[Ma trận Toeplitz|Toeplitz đơn vị thấp hơn nhị phân, nhân với các phép toán **F** 2. Chúng tạo thành bảng Cayley của Z 4 và tương ứng với các lũy thừa