✨Mặt (tô pô)

Mặt (tô pô)

thumb|right| Mặt yên ngựa (mặt hyperbolic paraboloid). thumb|right|Chai Klein trong không gian 3 chiều. Trong toán học, cụ thể là trong topo, một mặt là một đa tạp topo 2 chiều. Ví dụ quen thuộc nhất về mặt chính là phần biên của các khối trong không gian Euclid 3 chiều thông thường, chẳng hạn như mặt cầu. Ngoài ra, cũng có những mặt, chẳng hạn như chai Klein, không thể được nhúng vào không gian Euclid 3 chiều mà không sử dụng kỳ dị hoặc tự cắt.

Một mặt là "2 chiều" nghĩa là tại mỗi điểm, ta có thể xác định được một hệ tọa độ 2 chiều trên mặt. Chẳng hạn, với bề mặt Trái Đất, mà ta giả sử là một mặt cầu 2 chiều, thì các đường kinh tuyến và vĩ tuyến tạo thành một hệ trục tọa độ trên mặt cầu, trừ hai cực và kinh tuyến gốc.

Khái niệm mặt cũng được sử dụng trong vật lý, kỹ thuật, xử lý hình ảnh và nhiều lĩnh vực khác. Chẳng hạn, việc phân tích khí động học của một máy bay tập trung vào dòng chảy của không khí qua các mặt.

Định nghĩa và ví dụ

Một mặt (topo) là một không gian topo Hausdorff khác rỗng và có cơ sở đếm được, trong đó mọi điểm đều có một lân cận mở đồng phôi với một tập mở của không gian Euclid 2 chiều. Các lân cận này, cùng với các đồng phôi tương ứng, được gọi là một hệ tọa độ (coordinate chart). Nhờ chúng mà các lân cận giữ được hệ trục tọa độ chuẩn tắc trên mặt phẳng Euclid. Do đó, mặt được gọi là có tính Euclid địa phương.

Tổng quát hơn, một mặt (topo) có biên là một không gian topo Hausdorff mà trên đó mỗi điểm có một lân cận mở đồng phôi với một tập mở nào đó trong nửa mặt phẳng trên đóng trong \mathbb{R}^{2}

Các đồng phôi này cũng được gọi là hệ tọa độ địa phương. Biên của nửa mặt phẳng trên chính là trục hoành. Các điểm trên mặt tương ứng một điểm trên trục hoành qua một trong số các phép đồng phôi nói trên thì được gọi là điểm biên của mặt. Các điểm biên này lập thành biên của mặt và là một đa tạp 1 chiều không có biên, tức là hội của các đường cong đóng. Các điểm của mặt tương ứng với các điểm không nằm trong trục hoành được gọi là điểm trong. Tập hợp các điểm trong được gọi là phần trong của mặt và luôn khác rỗng. Ví dụ đơn giản nhất về một mặt có biên là các dĩa tròn đóng. Phần biên của chúng chính là các đường tròn.

Nếu không nói gì thêm, một mặt thường được hiểu là một mặt không có biên. Cụ thể, một mặt có biên bằng rỗng chính là mặt theo nghĩa thông thường. Một mặt compact, biên rỗng được gọi là một mặt 'đóng'. Các mặt cầu, mặt xuyến 2 chiều và các mặt chiếu thực là những ví dụ về mặt đóng.

Dải Mobius là mặt chỉ có một phía. Một cách tổng quát, một mặt được gọi là định hướng được nếu nó không chứa một đồng phôi của dải Mobius; một cách cảm tính, nó có hai phía phân biệt. Mặt cầu và mặt xuyến là những mặt định hướng được, trong khi đó mặt chiếu thực thì không vì khi xóa đi một điểm hoặc một dĩa tròn khỏi mặt chiếu thực, ta thu được dải Mobius

Trong hình học vi phân và hình học đại số, các cấu trúc khác được thêm vào topo của mặt, việc này giúp nhận ra các kỳ dị, chẳng hạn như các điểm tự cắt, cusps, việc mà ta không thể làm được thuần túy dưới ngôn ngữ topo.

Định nghĩa ngoại hàm của mặt và phép nhúng

[[Hình:Sphere wireframe.svg|left|Mặt cầu được định nghĩa bằng tham số hóa (x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ) hoặc định nghĩa ẩn (.)]]

Mặt ban đầu được định nghĩa là một không gian con của trong không gian Euclide, mà thông thường, những mặt này là các không điểm (tập nghiệm) của các hàm đa thức. Vì vậy, người ta gọi cách định nghĩa mặt này có tính ngoại hàm.

Trong mục trước, một mặt được định nghĩa bởi một không gian topo có tính chất Hausdorff và Euclide địa phương. Không gian topo này không cần xét là một không gian con của một không gian khác. Cách định nghĩa này có tính nội tại, và hiện nay Toán học dùng cách định nghĩa này để thấy rõ cấu trúc topo nội tại của mặt.

Một mặt được định nghĩa nội tại thì không có thêm sự ràng buộc với vai trò là không gian con của một không gian Euclide. Điều này làm cho các mặt được định nghĩa nội tại có vẻ không phải là một mặt với cấu trúc ngoại hàm (được định nghĩa trong không gian Euclide). Tuy nhiên, định lý nhúng Whitney khẳng định rằng mọi mặt đều có thể nhúng đồng phôi vào một không gian Euclide, trong không gian E4: Cách định nghĩa ngoại hàm và nội tại là tương đương với nhau.

Mọi mặt compact có định hướng được hoặc có biên đều có thể nhúng vô E3; mặt khác, một mặt phẳng thực xạ ảnh, compact, không định hướng được và không có biên, thì không thể nhúng vô E3. Mặt Steiner, bao gồm mặt Boy, mặt Roman và cross-cap, là ảnh nhúng chìm của không gian xạ ảnh thực trong E3.

right|thumb|Một dạng thắt nút của mặt xuyến.

Mỗi cách nhúng mặt vô một không gian khác (nếu có nhiều cách) cho ta một thông tin ngoại hàm khác nhau. Ví dụ, mặt xuyến có thể nhúng vào E3 một cách thông thường (giống chiếc nhẫn) hoặc thắt nút (xem hình). Hai cách nhúng là đồng phôi với nhau, nhưng không tương đương đồng luân.

Ảnh của ánh xạ liên tục, đơn ánh từ R2 vào không gian nhiều chiều Rn được gọi là một mặt tham số. Một mặt tham số không nhất thiết là mặt topo.

Xây dựng mặt từ đa giác

Mọi mặt đóng đều có thể được xây dựng từ một hình đa giác có số chẵn các cạnh và các cạnh này được định hướng. Đa giác như vậy, gọi là đa giác cơ bản của mặt, tạo nên mặt bằng cách đồng nhất (dán) các cặp cạnh của nó lại. Trong các ví dụ dưới đây, nếu dán các cạnh của đa giác lại với nhau sao cho chúng đúng tên (A với A, B với B) và đúng hướng (được thể hiện bằng các mũi tên) sẽ tạo thành các mặt tương ứng.

Tập tin:SphereAsSquare.svg|Mặt cầu Tập tin:ProjectivePlaneAsSquare.svg|Mặt phẳng xạ ảnh (real projective plane \mathbb{R}P^2 Tập tin:TorusAsSquare.svg|Mặt xuyến (torus) Tập tin:KleinBottleAsSquare.svg|Chai Klein

Mọi đa giác cơ bản đều có thể viết được dưới dạng ký hiệu như sau. Bắt đầu từ một đỉnh, tiến hành di chuyển trên các cạnh của đa giác theo một chiều xác định (có thể là thuận hoặc ngược chiều kim đồng hồ) đến khi trở lại điểm ban đầu. Trong lúc di chuyển, ghi lại tên các cạnh, trong đó thêm số mũ là -1 nếu đang di chuyển ngược định hướng của cạnh đó. Bốn hình trên, khi cuất phát từ góc trái-trên và di chuyển ngược chiều kim đồng hồ, ta thu được

  • Mặt cầu: A B B^{-1} A^{-1}
  • Mặt phẳng xạ ảnh: A B A B
  • Mặt xuyến: A B A^{-1} B^{-1}
  • Chai Klein: A B A B^{-1}.

Việc dán các cạnh của đa giác là một trường hợp đặc biệt của việc xây dựng không gian thương. Một cách tổng quát hơn, khái niệm không gian thương có thể được dùng để xây dựng các mặt. Chẳng hạn, khi xét thương của mặt cầu khi được đồng nhất tất cả các điểm đối xứng với nhau qua tâm (antipodes), ta thu được mặt phẳng xạ ảnh thực. Một ví dụ khác của phép lấy thương là tổng trực tiếp.

Tổng trực tiếp của hai mặt

Tổng trực tiếp của hai mặt MN, ký hiệu M # N, là mặt nhận được khi cắt đi từ mỗi mặt này một dĩa tròn và dán phần biên (là những đường tròn) của chúng lại với nhau. Đặc trưng Euler của tổng trực tiếp bằng tổng đặc trưng Euler của các số hạng trừ đi 2.

:\chi(M # N) = \chi(M) + \chi(N) - 2.\,

Mặt cầu S là phần tử đơn vị của phép lấy tổng trực tiếp, nghĩa là . Điều này là vì mặt cầu khi xóa đi một dĩa tròn thì cũng là một dĩa tròn nên khi thực hiện phép dán, nó thay thế cho dĩa tròn đã bị cắt từ M

Việc lấy tổng trực tiếp của một mặt M với mặt xuyến T có thể được xem như để lại trên M một lỗ tròn. Nếu M là một mặt định hướng được thì cũng định hướng được. Vì tổng trực tiếp là phép toán giao hoán nên tổng trực tiếp của hữu hạn các mặt cũng được xác định tốt.

Tổng trực tiếp của hai mặt phẳng xạ ảnh, , là chai Klein K. Tổng trực tiếp của mặt phẳng xạ ảnh và chai Klein thì đồng phôi với tổng trực tiếp của mặt phẳng xạ ảnh và mặt xuyến; nói cách khác, ta có công thức . Do đó, tổng trực tiếp của 3 mặt phẳng xạ ảnh thì đồng phôi với tổng trực tiếp của mặt phẳng xạ ảnh và mặt xuyến. Khi có một số hạng là mặt phẳng xạ ảnh thì tổng trực tiếp là một mặt không định hướng được.

Mặt đóng

Một mặt đóng là một mặt compact không có biên. Ví dụ về những mặt đóng là mặt cầu, mặt xuyến và chai Klein. Ví dụ về những mặt không đóng là dĩa tròn (là mặt cầu bỏ đi một điểm), mặt trụ (là mặt cầu bỏ đi hai điểm) và dải Mobius

Định lý phân loại mặt đóng

right|thumb|Ví dụ về các mặt đóng định hướng được (bên trái) và các mặt có biên (bên phải). Bên trái: mặt cầu, mặt xuyến, mặt của khối lập phương (đồng phôi với mặt cầu). Bên phải: dĩa tròn, hình vuông, mặt bán cầu (hemisphere). Biên của các mặt được vẽ màu đó. Các mặt này đều đồng phôi với nhau.

Định lý phân loại mặt đóng phát biểu rằng: Mọi mặt đóng và liên thông thì đồng phôi với một phần tử trong các họ sau:

Mặt cầu;

Tổng trực tiếp của g mặt xuyến, với g \geq 1;

Tổng trực tiếp của k mặt phẳng xạ ảnh, for k \geq 1.

Các mặt thuộc hai họ đầu tiên thì định hướng được. Ta cũng có thể gộp hai họ này là một bằng cách xem mặt cầu là tổng trực tiếp của 0 mặt xuyến. Số mặt xuyến g được gọi là giống (genus) của mặt. Đặc trưng Euler của mặt cầu và mặt xuyến lần lượt là 2 và 0 và một cách tổng quát, đặc trưng Euler của tổng trực tiếp g mặt xuyến là .

Các mặt thuộc họ thứ ba thì không định hướng được. Đặc trưng Euler của mặt phẳng xạ ảnh là 1, do đó, đặc trưng Euler của tổng trực tiếp k mặt phẳng xạ ảnh là .

Từ hai điều trên, có thể thấy một mặt đóng sẽ xác định duy nhất, sai khác một đồng phôi, với 2 thông tin sau: đặc trưng Euler và việc nó có định hướng được hay không. Nói cách khác, đặc trưng Euler và tính định hướng được hoàn toàn phân loại, sai khác một đồng phôi, được các mặt đóng.

Mặt đóng gồm nhiều thành phần liên thông cũng có thể được phân loại bằng việc phân loại từng thành phần liên thông của nó. Do đó sẽ không mất tính tổng quát nếu ta giả sử mặt là liên thông.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
nhỏ|Dưới con mắt tôpô học, cái cốc và cái vòng là một **Tô pô** hay **tô pô học** có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm _topos_ (nghĩa là
thumb|right| Mặt yên ngựa (mặt hyperbolic paraboloid). thumb|right|Chai Klein trong không gian 3 chiều. Trong toán học, cụ thể là trong topo, một **mặt** là một đa tạp topo 2 chiều. Ví dụ quen thuộc
thumb|Hình cầu đồng phôi với không gian thương của một hình tròn, bằng cách **_dán_** tất cả các điểm biên của hình tròn với nhau thành một điểm. thumb|[0,1]/\{0,1\} đồng phôi với đường tròn S^1.
**Không gian tôpô** là những cấu trúc cho phép người ta hình thức hóa các khái niệm như là sự hội tụ, tính liên thông và tính liên tục. Những dạng thường gặp của **không
Trong tô pô và các ngành liên quan của toán học, một **không gian rời rạc** là một ví dụ cực kì đơn giản của một không gian topo hay các cấu trúc tương tự,
Trong toán học, **tô pô giới hạn dưới** hay **tô pô khoảng nửa mở phải** là tô pô được định nghĩa trên tập \mathbb{R} của các số thực; nó khác với tô pô tiêu chuẩn
**Tôpô đại số** là một nhánh của toán học sử dụng các công cụ của đại số để nghiên cứu các không gian tôpô. ## Phương pháp bất biến đại số Mục đích là xem
**Tối ưu hóa cấu trúc (Topology Optimization-TO**) là phương pháp tối ưu hóa thiết kế cơ khí bằng phương pháp toán học. Mục tiêu là tìm phân bố vật liệu tối ưu cho thiết kế
Khái niệm **trù mật** là một khái niệm tô pô. Giả sử A B là 2 tập con trong không gian tôpô X . Ta nói tập A
nhỏ|Mô tả [[mặt Dini]] Trong toán học, người ta khái quát rằng một mặt phẳng mà không cần phải "phẳng", tức độ cong không nhất thiết phải bằng 0, là một **bề mặt**. Điều này
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
nhỏ|Không gian mà chú cua [[còng này (có một càng to hơn bên kia nên là một hình không đối xứng) sinh sống là một mặt Mobius. Lưu ý rằng chú cua biến thành hình
Trong toán học, **lý thuyết nhóm tổ hợp** nghiên cứu các nhóm tự do, và khái niệm của biểu diễn của nhóm bằng các phần tử sinh và các quan hệ. Nó được sử dụng
nhỏ|phải|Mặt cầu với các trục Trong không gian metric ba chiều, **mặt cầu** là quỹ tích những điểm cách đều một điểm O cố định cho trước một khoảng không đổi R. Điểm O gọi
Trong toán học, một tập hợp con của một không gian tôpô được gọi là **không đâu trù mật** nếu bao đóng của nó có phần trong rỗng. Ví dụ, đường thẳng chứa trong mặt
**Đăk Tô cũ** là một huyện thuộc tỉnh Kon Tum cũ, Việt Nam. ## Địa lý Huyện Đăk Tô nằm ở phía bắc tỉnh Kon Tum, có vị trí địa lý: *Phía tây giáp huyện
Trong toán học, một **hàm liên tục** hay **hàm số liên tục** là một hàm số không có sự thay đổi đột ngột trong giá trị của nó, gọi là những điểm gián đoạn. Chính
**Pu Kom Pô** (hay **Pucômbô**, ? - 1867) là tên (theo cách gọi của người Việt) một nhà sư người Khmer, và là thủ lĩnh cuộc kháng Pháp và triều đình Campuchia thân Pháp, khởi
Trên [[hình cầu, tổng các góc trong của một tam giác cầu không bằng 180° (xem hình học cầu). Mặt cầu không phải là một mặt Euclid, nhưng trong một vùng lân cận đủ nhỏ
Máy tính lượng tử là hệ thống có thể thực thi vô số phép tính phức tạp cùng một lúc mà một máy tính thông thường có thể phải mất hàng triệu năm mới xong.
Minh họa của định lý đường cong Jordan. Đường cong Jordan (vẽ bằng màu đen) chia mặt phẳng thành 2 phần: "phần trong" (màu xanh) và "phần ngoài"(màu hồng). **Định lý đường cong Jordan** là
**Po Phaok The** (? - 1835) hoặc **Nguyễn Văn Thừa** (阮文承) là lãnh tụ chính thức sau cùng của tiểu quốc Panduranga, tại vị từ 1828 đến 1832. ## Tiểu sử Chính trường Panduranga dưới
Trong toán học, **nhóm cơ bản** là một trong những khái niệm cơ bản của tô pô đại số. Mỗi một điểm trong không gian tô pô, có một nhóm cơ bản liên kết với
**Po Klong Garai** (tiếng Chăm: _Po Klaung Yăgrai_, 1151 - 1205) là vua của tiểu quốc Panduranga trong 38 năm. Ông đã lãnh đạo người Chăm đương cự thành công ách đô hộ của triều
upright=1.25|thumb|Đồng bằng Padan ở phía Bắc [[Ý (màu xanh lá cây) và lưu vực sông Po ở Đồng bằng (vòng tròn màu đỏ)]] thumb|upright=1.25|Bản đồ thể hiện [[Sông Po và các phụ lưu ở Đồng
liên_kết=https://vi.wikipedia.org/wiki/T%E1%BA%ADptin:Hausdorff_regular_normal_space_diagram.png|thế=Illustrations of the properties of Hausdorffness, regularity and normality|nhỏ|Hình minh họa một số tiên đề tách. Các vùng đường viền đứt đoạn vô định hình màu xám biểu thị các tập hợp mở xung quanh
Trong hình học đại số và vật lý lý thuyết, **đối xứng gương** là mối quan hệ giữa các vật thể hình học được gọi là những đa tạp Calabi-Yau. Các đa tạp này có
Trong toán học, **tập có hướng** (hay **tiền thứ tự có hướng** hay **tập bị lọc** và đôi khi **tập được định hướng**) là một tập hợp khác rỗng A kèm theo một quan hệ
**Max Wilhelm Dehn** (sinh ngày 13 tháng 11 năm 1878 – mất ngày 27 tháng 6 năm 1952) là nhà toán tọc Đức nổi tiếng bởi các công trình trong hình học. tô pô và
Cùng với khái niệm không gian mêtric, **không gian định chuẩn** cũng đóng vai trò rất quan trọng trong giải tích nói chung và topo nói riêng. ## Sơ lược về không gian định chuẩn
nhỏ|Một [[trò đùa toán học thường được nhắc đến là các nhà topo học không thể biết cái cốc uống và cái donut có khác nhau không, do một cái donut có thể được biến
**Pơ mu** (danh pháp khoa học: **_Fokienia_**) là một chi trong họ Hoàng đàn (_Cupressaceae_). là trung gian giữa hai chi _Chamaecyparis_ và _Calocedrus_, nhưng về mặt di truyền học chi Fokienia gần gũi hơn
**Po Tisuntiraidapuran** (? - 1793) là lãnh tụ của tiểu quốc Panduranga (Thuận Thành trấn) từ 1780 đến 1793. ## Tiểu sử Po Tisuntiraidapuran (Nam sử gọi là **Nguyễn Văn Tá** / 阮文佐) được biết
Trong toán học, **quả cầu** (hay còn gọi là **khối cầu** hay **hình cầu**) thể hiện phần bên trong của một mặt cầu; cả hai khái niệm quả cầu và mặt cầu không chỉ được
Khái niệm hội tụ trong toán học có thể được sử dụng trong các không gian Euclid (chẳng hạn xem định nghĩa (_ε_, _δ_) của giới hạn), các không gian metric, ví dụ như
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
phải|nhỏ|250x250px| Đường cong này có số quấn quanh điểm _p_ bằng hai. Trong toán học, **số quấn** của một đường cong kín trong mặt phẳng quanh một điểm cho trước là một số nguyên biểu
Trong toán học, tập **các số thực dương**, \R_{>0} = \left\{ x \in \R \mid x > 0 \right\}, là tập con của các số thực mà lớn hơn không. Tập **số thực không âm**,
nhỏ|Tập **A** là liên thông, còn **B** không **Tập hợp liên thông** là tập hợp không thể biểu diễn dưới dạng hợp của hai tập hợp mở không rỗng rời nhau. Một không gian tôpô
Mọi điểm trong không gian Euclid ba chiều biểu hiện trong hệ quy chiếu [[Hệ tọa độ Descartes|Descartes]] Khoảng 300 năm TCN, nhà toán học Hy Lạp cổ đại Euclid đã tiến hành nghiên cứu
nhỏ|Một mặt cong giống 2 Trong hình học và các ngành toán học liên quan, **giống** có một vài ý nghĩa khác nhau nhưng có liên hệ gần gũi. Khái niệm phổ biến nhất, giống
**Định lý phạm trù Baire** là định lý quan trọng trong topo, trong giải tích hiện đại, định lý mang tên nhà toán học người Pháp René-Louis Baire (1874 - 1932). Định lý có hai
**Chiến dịch Đăk Tô – Tân Cảnh** hay **Trận Đăk Tô – Tân Cảnh** năm 1967, là một trận đụng độ trực tiếp giữa Quân Giải phóng miền Nam Việt Nam với quân đội Hoa
Trong tô pô, một không gian tôpô được gọi **đơn liên** nếu nó liên thông đường và nhóm cơ bản của nó tại mọi điểm là tầm thường (hay mọi vòng đều đồng luân với
Trong tô pô và các ngành có liên quan của toán học, một **không gian Hausdorff,** **không gian** **tách được** hoặc **không gian T2** là một không gian tô pô mà hai điểm khác biệt
nhỏ|phải| Mặt Riemann ứng với "hàm số" f(z)=\sqrt{z}. Trong toán học, **mặt Riemann** (hay còn gọi là **diện Riemann**), đặt tên theo nhà toán học Bernhard Riemann, là đa tạp phức một chiều. Mặt Riemann
**Oswald Veblen** (24.6.1880 – 10.8.1960) là nhà toán học, hình học và tô pô người Mỹ. Công trình nghiên cứu của ông được áp dụng trong Vật lý nguyên tử và thuyết tương đối. Ông
Trong hình học và tô pô, thông thường một đa tạp được xác định là một không gian Hausdorff. Trong tô pô đại cương, tiên đề này được nới lỏng, và người ta nghiên cứu
nhỏ|Dải Hopf (/hɑpf/) là một mô hình cho cấu trúc tô pô của DNA. Trong sinh học, **lý thuyết ruy băng** là một phần của lý thuyết toán học để ứng dụng ở lĩnh vực
**Bản đồ học** hay **Đồ bản học** là khoa học nghiên cứu và phản ánh sự phân bố không gian, sự phối hợp mối liên hệ giữa các đối tượng, hiện tượng tự nhiên và