Hình học afin là môn hình học không có bao hàm các khái niệm về gốc tọa độ, chiều dài hay góc, mà thay vào đó là các khái niệm về phép trừ của các điểm để cho ra một vectơ.
Nó thuộc dạng nằm giữa của hình học Euclide và hình học xạ ảnh (hình học chiếu). Nó còn gọi là hình học của không gian afin, của một chiều cho sẵn n trên trường K. Trường hợp K là số thực, ta sẽ cụ thể hơn.
Nền móng
Hình học afin có thể xem là hình học của vectơ không chứa các khái niệm chiều dài hay góc. Không gian afin có thể xem là không gian vectơ ở tại cùng chiều khi mà bỏ qua gốc tọa độ 0. Đó là cách nghĩ của các tài liệu cũ khi đề cập đến lý thuyết vectơ tự do. Quan điểm hiện nay và trừu tượng hơn, đề cập ở cuối trang, là sự rút gọn của hình học afin về đại số tuyến tính.
Ứng dụng và các mối quan hệ
Khái niệm hình học afin có nhiều ứng dụng, ví dụ trong hình học vi phân. Do có mối quan hệ mật thiết với đại số tuyến tính, có nhiều cách để diễn đạt mối quan hệ này.
Biến đổi afin
Theo mục tiêu chung của chương trình Erlangen, để có thể nói chính xác hình học affine là gì thì hãy nhìn vào nhóm các phép biến đổi đối xứng của nó.
Điều này có thể thực hiện nhanh chóng trong không gian vectơ V. Nhóm tuyến tính tổng quát GL(V) không phải là toàn bộ nhóm afin: mà còn kém theo phép tịnh tiến theo vectors v trong V. (Phép tịnh tiến này sẽ ánh xạ mọi w trong V thành w + v.) Nhóm afin được tọa bởi nhóm tuyến tính chung và phép tịnh tiến hay chính là semidirect product của V &x22CA; GL(V). (Dùng cách biểu diễn GL(V) trên V để quy định semidirect product.)
👁️
0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Hình học afin** là môn hình học không có bao hàm các khái niệm về gốc tọa độ, chiều dài hay góc, mà thay vào đó là các khái niệm về phép trừ của các
nhỏ|phải|Các đoạn thẳng trong không gian afin 2 chiều. Trong toán học, **không gian afin** (hoặc **không gian aphin**) là một cấu trúc hình học tổng quát tính chất của các đường thẳng song song
Trong toán học, **tổ hợp afin** của các vectơ _x_1,..., _x__n_ là một tổ hợp tuyến tính được định nghĩa như sau: : trong đó tổng các hệ số bằng 1,
Trong hình học, một phép **biến đổi afin** hay **ánh xạ afin** (tiếng Latin, _affinis_, nghĩa là "được kết nối với") giữa hai không gian vector bao gồm một biến đổi tuyến tính đi kèm
phải|nhỏ|200x200px|Mặt phẳng giả hữu hạn bậc 2, chứa 4 "điểm" và 6 "đường". Các đường có cùng màu là "song song". Tâm của hình không phải là "điểm" của mặt phẳng affin này, vì thế
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Trong toán học, **bao afin** của tập hợp _S_ trong không gian Euclide **R**_n_ là tập afin nhỏ nhất chứa _S_, hay định nghĩa tương đương: **bao afin** là giao của tất cả các tập
Trong hình học, hệ **tọa độ Barycentric** (Còn gọi là Hệ tọa độ tỉ cự) là một hệ tọa độ trong đó vị trí của một điểm trong một đa diện, được xác định là
nhỏ|phải|Đồ thị vẽ a và b là hai đường thẳng song song Trong hình học, sự **song song** là một đặc tính của các đường thẳng, mặt phẳng, hoặc tổng quát hơn là các không
**Định lý Ceva** là một định lý phổ biến trong hình học cơ bản. Cho một tam giác _ABC_, các điểm _D_, _E_, và _F_ lần lượt nằm trên các đường thẳng _BC_, _CA_, và
Trong hình học, một **hình khối lục diện** là một hình khối trong không gian ba chiều do sáu hình bình hành ghép lại. Một cách tương tự, mối liên hệ giữa hình khối lục
right|thumb|upright=1.5|Định lý Routh Trong hình học phẳng, **Định lý Routh** nói về tỉ lệ diện tích tam giác tạo bởi ba đường thẳng cevian và tam giác ban đầu. Định lý này phát biểu rẳng
thumb|right|Định lý Menelaus **Định lý Menelaus** là một định lý nâng cao trong hình học tam giác, được phát biểu như sau: _Cho tam giác ABC. Các điểm D, E, F lần lượt nằm trên
thumb|Định lý Brianchon: Đường chéo của lục giác ngoại tiếp đường conic sẽ đồng quy : Trong hình học phẳng **định lý Brianchon** phát biểu rằng _nếu một lục giác ngoại tiếp một conic (đường
alt=|right|thumb|Một hàm (màu đen) là hàm lồi khi và chỉ khi vùng nằm phía trên đồ thị của nó (màu lục) là [[tập lồi. Vùng này chính là trên đồ thị của hàm.]] Trong toán
nhỏ|Bao lồi của tập hợp màu đỏ là [[tập lồi màu xanh và màu đỏ.]] Trong hình học, **bao lồi** của một hình là tập hợp lồi nhỏ nhất chứa hình đó. Bao lồi có
**Văn Như Cương** (1 tháng 7 năm 1937 – 9 tháng 10 năm 2017) là một nhà giáo Việt Nam, nhà biên soạn sách giáo khoa phổ thông và giáo trình đại học bộ môn
Trong hình học, **định lý Radon** về các tập hợp lồi, đặt tên theo Johann Radon, khẳng định rằng mọi tập hợp gồm _d_ + 2 điểm trong **R**_d_ đều có thể chia thành hai tập hợp
Trong hình học, một **vị trí** hoặc **vector vị trí**, còn được gọi là **tọa độ** **vector** hoặc **bán kính** **vector,** là một vectơ đại diện cho vị trí của một điểm _P_ trong không
thumb|Hai hình học hình học tương tự liên quan đến sự biến đổi đồng đẳng đối với một trung tâm đồng đẳng S. Các góc ở các điểm tương ứng đều giống nhau và có
Trong toán học, cụ thể là ngành giải tích phức, một **hàm phân hình** trên một tập con mở của mặt phẳng phức là một hàm số chỉnh hình trên toàn bộ _ngoại trừ_ một
thumb|Một hình elip (đỏ) bao quanh mặt cắt của một [[hình nón với một mặt phẳng nghiêng]] thumb|Các thành phần của hình elip thumb|Các hình elip với tâm sai tăng dần Trong toán học, một
nhỏ|Dưới con mắt tôpô học, cái cốc và cái vòng là một **Tô pô** hay **tô pô học** có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm _topos_ (nghĩa là
Trong **thị giác máy tính**, **mô hình túi từ** (**bag-of-words model,** mô hình BoW) có thể được áp dụng để phân loại hình ảnh, bằng cách coi các đặc trưng của hình ảnh như từ
Bài viết này là **danh sách các thuật toán** cùng một mô tả ngắn cho mỗi thuật toán. ## Thuật toán tổ hợp ### Thuật toán tổ hợp tổng quát * Thuật toán Brent: tìm
**Ngô Bảo Châu** (sinh ngày 28 tháng 6 năm 1972), giáo sư tại Khoa Toán, Đại học Chicago, là một nhà toán học Pháp-Việt nổi tiếng với chứng minh bổ đề cơ bản cho các
Trong lý thuyết độ đo, **định lý bánh mì dăm bông**, còn gọi là **định lý Stone–Tukey** theo Arthur H. Stone và John Tukey, phát biểu rằng với mọi _n_ "đối tượng" đo được trong
nhỏ|**Trung điểm** của đoạn thẳng từ (_x1_, _y1_) đến (_x2_, _y2_) **Trung điểm** là điểm nằm chính giữa đoạn thẳng, chia đoạn thẳng ra làm hai đoạn dài bằng nhau. Công thức để xác định
**Siêu phẳng** của không gian n chiều là một không gian con n-1 chiều của nó. Một siêu phẳng trong không gian Euclid tách không gian đó thành hai nửa không gian. Ví dụ, trong
**Mặt bậc hai** hay **mặt cong bậc hai** là mặt trong không gian affine ba chiều, quỹ tích những điểm thỏa mãn phương trình bậc hai dạng
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
nhỏ|Tam giác _ABC_ và ảnh phản xạ của nó _A_B_C_'' qua phép phản xạ qua trục đối xứng c1c2. Trong toán học, **phép phản xạ** là một ánh xạ đẳng cự từ một không gian
phải|nhỏ|Phép quay của một hình trong không gian hai chiều quanh điểm . **Phép quay** trong toán học là một khái niệm bắt nguồn từ hình học. Một phép quay bất kỳ là một sự
Trong toán học, một phép **biến đổi tuyến tính** (còn được gọi là **toán tử tuyến tính** hoặc là **ánh xạ tuyến tính**) là một ánh xạ giữa hai mô đun (cụ
Trong toán học, **nhóm trực giao** với số chiều , được ký hiệu là , là nhóm gồm các phép biến đổi bảo toàn khoảng cách trong một không gian Euclid chiều bảo toàn
**François Maurice Adrien Marie Mitterrand** (Phát âm tiếng Việt như là phờ-răng-xoa mít-tờ-răng; sinh ngày 16 tháng 10 năm 1916 – mất ngày 8 tháng 1 năm 1996) là Tổng thống Pháp và Đồng hoàng
**Có thể điều khiển được** là một thuộc tính quan trọng của một hệ thống điều khiển và thuộc tính có thể điều khiển được đóng một vai trò quan trọng trong nhiều bài toán
thumb|220x124px | right | Ánh xạ liên tục giữa hai topo Trong toán học, **ánh xạ** (Tiếng Anh: _mapping/_ Tiếng Hán:映射) là một khái niệm chỉ quan hệ hai ngôi giữa hai tập hợp liên
Một tập hợp _A_ gồm các số thực (được vẽ bằng các chấm màu xanh), tập hợp các cận trên của _A_ (các chấm màu đỏ), và giá trị nhỏ nhất của các cận trên