phải|Đường cong Gauss chuẩn hóa với [[giá trị kỳ vọng μ và phương sai σ2. Những tham số tương ứng là a = 1/(σ√(2π)), b = μ, c = σ]]
Trong toán học, hàm Gauss (đặt tên theo Carl Friedrich Gauss) là một hàm có dạng:
:
với các hằng số thực a > 0, b, c > 0, và e ≈ 2.718281828 (Số Euler).
Biểu đồ của một hàm Gauss là một đường cong đối xứng đặc trưng "hình quả chuông". Đường cong này rớt xuống rất nhanh khi tiến tới cộng/trừ vô cùng. Tham số a là chiều cao tối đa đường cong, b là vị trí tâm của đỉnh và c quyết định chiều rộng của "chuông".
Hàm Gauss được sử dụng rộng rãi. Trong thống kê chúng miêu tả phân bố chuẩn, trong xử lý tín hiệu chúng giúp định nghĩa bộ lọc Gauss, trong xử lý hình ảnh hàm Gauss hai chiều được dùng để tạo hiệu ứng mờ Gauss, và trong toán học chúng được dùng để giải phương trình nhiệt và phương trình khuếch tán và định nghĩa phép biến đổi Weierstrass.
Tích phân Gauss
Đặt , Thì ta có .
để áp dùng biến đổi Hệ tọa độ cực, đặt lại. Ta có với Ma trận Jacobi.
Mà Định thức Jacobi , Ta có .
Nên .
Vậy ,
Đây là lý do của diện tích dưới đường cong Phân phối chuẩn phải bằng 1.
Tính chất
Hàm Gauss phát sinh từ việc gán hàm mũ phức vào một hàm bậc hai thông thường. Do đó hàm Gauss có logarit là một hàm bậc hai.
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
phải|Đường cong Gauss chuẩn hóa với [[giá trị kỳ vọng μ và phương sai σ2. Những tham số tương ứng là _a_ = 1/(σ√(2π)), _b_ = μ, _c_ = σ]] Trong toán học, **hàm Gauss**
thumb|Biểu đồ hàm lỗi Trong toán học, **hàm lỗi** (cũng có tên là **hàm lỗi Gauss**), thường ký hiệu là **erf**, là một hàm phức của một biến phức được định nghĩa dưới dạng: :
nhỏ|Biểu diễn hàm delta Dirac bởi một đoạn thẳng có mũi tên ở đầu. **Hàm delta Dirac** hoặc **Dirac delta** là một khái niệm toán học được đưa ra bởi nhà vật lý lý thuyết
Trong kỹ thuật, **hàm truyền** (còn được gọi là **hàm hệ thống** hoặc **hàm mạng**) của thành phần hệ thống điện tử hoặc điều khiển là một hàm toán học mô hình hóa lý thuyết
Trong toán học, **hàm đếm số nguyên tố** là hàm số đếm số lượng các số nguyên tố nhỏ hơn hoặc bằng với một số thực _x._ Nó được ký hiệu là (_x_) (không liên
Trong lý thuyết điều khiển tự động, bài toán điều khiển Gauss tuyến tính-bậc hai (LQG) là một trong những bài toán điều khiển tối ưu cơ bản nhất. Nó liên quan đến các hệ
**Định lý Gauss**, hay còn gọi là **định lý phân kỳ**, hay **định lý Ostrogradsky**, hay **định lý Gauss-Ostrogradsky** (do hai nhà toán học người Đức Carl Friedrich Gauß và người Nga Mikhail Vasilyevich Ostrogradsky
**Giả thuyết Gauss-Markov** bao gồm bốn giả thuyết về lỗi (hay phần dư) (tiếng Anh: errors) để đảm bảo một phương pháp ước lượng (estimator) cho ra các tham số không bị biased: Giả thuyết
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
\; \exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2} \right) \!| cdf =| mean =| median =| mode =| variance =| skewness = 0| kurtosis = | entropy =| mgf =| char =| **Phân phối
thumb|right|Quang học nghiên cứu hiện tượng [[tán sắc của ánh sáng.]] **Quang học** là một ngành của vật lý học nghiên cứu các tính chất và hoạt động của ánh sáng, bao gồm tương tác
**Hiển vi định vị quang hoạt** (Photo-activated localization microscopy - PALM) và **Hiển vi quang học dựng ảnh ngẫu nhiên** (stochastic optical reconstruction microscopy - STORM) là các phương pháp cho phép thu được ảnh
Tích phân xác định được định nghĩa như diện tích _S_ được giới hạn bởi đường cong _y_=_f_(_x_) và trục hoành, với _x_ chạy từ _a_ đến _b_ **Tích phân** (Tiếng Anh: _integral_) là một
Trong Giải tích, **Định lý kẹp** là một định lý liên quan đến giới hạn của hàm số. Định lý kẹp là một công cụ mang tính kĩ thuật thường dùng trong các phép chứng
thumb|220x124px | right | Đồ thị hàm gamma và các cách diễn tả mở rộng khác của giai thừa Trong toán học, **giai thừa** là một toán tử một ngôi trên
nhỏ|346x346px| Hạt nhân và ảnh của ánh xạ Trong toán học, **hạt nhân** (_kernel_) của một ánh xạ tuyến tính, còn gọi là **hạch** hay **không gian vô hiệu** (_null space_), là không gian vectơ
Trong lý thuyết số, **định lý Dirichlet trên cấp số cộng** được phát biểu một cách sơ cấp như sau: Cho a;b là hai số nguyên dương nguyên tố cùng nhau, thế thì sẽ có
phải|nhỏ|James Clerk Maxwell Các **phương trình Maxwell** bao gồm bốn phương trình, đề ra bởi James Clerk Maxwell, dùng để mô tả trường điện từ cũng như những tương tác của chúng đối với vật
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
Bài viết này là **danh sách các thuật toán** cùng một mô tả ngắn cho mỗi thuật toán. ## Thuật toán tổ hợp ### Thuật toán tổ hợp tổng quát * Thuật toán Brent: tìm
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
Trong tính toán lượng tử, **thuật toán lượng tử** là một thuật toán chạy bằng mô hình thực tế của tính toán lượng tử, mô hình được sử dụng phổ biến nhất là mô hình
**Johann Carl Friedrich Gauß** (; ; ; 30 tháng 4 năm 1777 – 23 tháng 2 năm 1855) là một nhà toán học và nhà khoa học người Đức tài năng, người đã có nhiều
nhỏ|250x250px|Xác suất của việc tung một số con số bằng cách sử dụng hai con xúc xắc. **Xác suất** (Tiếng Anh: _probability_) là một nhánh của toán học liên quan đến các mô tả bằng
**Phân tích hồi quy** là một phân tích thống kê để xác định xem các biến độc lập (biến thuyết minh) quy định các biến phụ thuộc (biến được thuyết minh) như thế nào. ##
phải|Mỗi phần tử của một ma trận thường được ký hiệu bằng một biến với hai chỉ số ở dưới. Ví dụ, a2,1 biểu diễn phần tử ở hàng thứ hai và cột thứ nhất
Trong toán học và thống kê, một **phân phối xác suất** hay thường gọi hơn là một **hàm phân phối xác suất** là quy luật cho biết cách gán mỗi xác suất cho mỗi khoảng
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Trong giải tích số, các **phương pháp Runge-Kutta** là một họ của các phương pháp lặp ẩn (implicit) và hiện (explicit), trong đó bao gồm thường trình nổi tiếng được gọi là các phương pháp
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
Trong toán học, **vành** là một trong những cấu trúc đại số cơ bản. Nhiều đối tượng toán học có thể được xem xét như là vành, ví dụ như vành các hàm số liên
Trong toán học và khoa học máy tính, hàm **floor** (**phần nguyên nhỏ hơn**) và **ceiling** (**phần nguyên lớn hơn**) là các quy tắc cho tương ứng một số thực vào một số nguyên gần
thumb|Một môi trường điện môi cho thấy hiện tượng các điện tích định hướng tạo nên sự phân cực. Một môi trường như thế có thể có tỉ lệ điện thông với điện tích thấp
**Lý thuyết số đại số** là một nhánh của lý thuyết số sử dụng các kỹ thuật của đại số trừu tượng để nghiên cứu các số nguyên, các số hữu tỷ và các tổng
Hình minh họa Kết quả của việc khớp một tập hợp các điểm dữ liệu với hàm bậc hai Trong toán học, **phương pháp bình phương tối thiểu (Ordinary least square)**, còn gọi là **bình
| cdf =| mean =| median =| mode =| variance = (ma trận hiệp phương sai)| skewness =0| kurtosis =0| entropy =| mgf =
**Georg Friedrich Bernhard Riemann** (phát âm như "ri manh" hay IPA ['ri:man]; 17 tháng 9 năm 1826 – 20 tháng 7 năm 1866) là một nhà toán học người Đức, người đã có nhiều đóng
thumb|upright=1.3|Các [[hàm sóng của electron trong một nguyên tử hydro tại các mức năng lượng khác nhau. Cơ học lượng tử không dự đoán chính xác vị trí của một hạt trong không gian, nó
**Đại số** là một nhánh của toán học nghiên cứu những hệ thống trừu tượng nhất định gọi là cấu trúc đại số và sự biến đổi biểu thức trong các hệ thống này. Đây
thumb|354x354px|Sơ đồ mô hình học đặc trưng trong học máy, được áp dụng cho các nhiệm vụ hạ nguồn, có thể được áp dụng cho dữ liệu thô như hình ảnh hoặc văn bản, hoặc
Trong toán học, cụ thể hơn là trong đại số giao hoán, một **vành Euclid** là một miền nguyên cùng với một hàm Euclid cho phép thực hiện phép chia có dư. ## Định nghĩa
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
|nhỏ|300x300px|Trong [[không gian Euclide ba chiều, ba mặt phẳng này biểu diễn các nghiệm của phương trình tuyến tính, và giao tuyến của chúng biểu thị tập các nghiệm chung: trong trường hợp này là
Trong đại số tuyến tính, dạng **bậc thang** của một ma trận là hình dạng thu được của nó sau khi thực hiện phép khử Gauss. Một ma trận ở dạng **hàng bậc thang** có
Từ trường của một thanh [[nam châm hình trụ.]] **Từ trường** là môi trường năng lượng đặc biệt sinh ra quanh các điện tích chuyển động hoặc do sự biến thiên của điện trường hoặc
right|thumb|Một ví dụ về "vẻ đẹp trong toán học" - một chứng minh đơn giản và thanh lịch về [[Định lý Pythagore.]] **Vẻ đẹp của Toán học** mô tả quan niệm rằng một số nhà
**Adrien-Marie Legendre** (18 tháng 9 năm 1752 – 10 tháng 1 năm 1833) là một nhà toán học người Pháp. Ông có nhiều đóng góp quan trọng vào thống kê, số học, đại số trừu tượng
**John Forbes Nash Jr.** (13 tháng 6 năm 1928 – 23 tháng 5 năm 2015) là một nhà toán học người Mỹ với chuyên ngành lý thuyết trò chơi, hình học vi phân và phương
Trong toán học, **định lý Green** đưa ra mối liên hệ giữa tích phân đường quanh một đường cong khép kín _C_ và tích phân mặt trên một miền _D_ bao quanh bởi _C_. Đây