✨Quang học

Quang học

thumb|right|Quang học nghiên cứu hiện tượng [[tán sắc của ánh sáng.]]

Quang học là một ngành của vật lý học nghiên cứu các tính chất và hoạt động của ánh sáng, bao gồm tương tác của nó với vật chất và cách chế tạo ra các dụng cụ nhằm sử dụng hoặc phát hiện nó. Phạm vi của quang học thường nghiên cứu ở bước sóng khả kiến, tử ngoại, và hồng ngoại. bởi vì ánh sáng là sóng điện từ, những dạng khác của bức xạ điện từ như tia X, sóng vi ba, và sóng vô tuyến cũng thể hiện các tính chất tương tự. Người La Mã và Hy Lạp cổ đại đã đổ đầy các quả cầu kính bằng nước để tạo ra thấu kính. Những cách làm này sau đó được các nhà triết học Hy Lạp và Ấn Độ phát triển thành lý thuyết ánh sáng và sự nhìn, cũng như người La Mã phát triển lý thuyết quang hình học. Từ optics xuất phát từ tiếng Hy Lạp cổ đại , có nghĩa là "biểu hiện, nhìn nhận".

Triết học Hy Lạp chia quang học ra thành hai lý thuyết đối lập dựa trên cách miêu tả làm sao mắt con người nhìn được, "lý thuyết mắt phát ra tia sáng" và "lý thuyết mắt thu nhận tia sáng". Lý thuyết mắt thu nhận tia sáng cho rằng con người nhìn thấy sự vật là do các vật phát ra những bản sao giống y hệt chúng (gọi là eidola) mà mắt người thu nhận được. Với sủng hộ của nhiều triết gia như Democritus, Epicurus, Aristotle và các môn đệ, lý thuyết này dường như đã có nét giống với lý thuyết hiện đại về thị giác, nhưng nó vẫn chỉ là các tiên đoán mà thiếu đi các thí nghiệm kiểm tra.

Plato là người đầu tiên nêu ra lý thuyết mắt người phát ra các tia sáng, lý thuyết cho rằng cảm nhận thị lực là do các tia sáng phát ra từ mắt người chiếu vào vật thể. Ông cũng bình luận về tính chẵn lẻ thông qua đối xứng gương khi miêu tả vấn đề ở trong cuốn Timaeus. Vài trăm năm sau, Euclid viết cuốn sách Quang học khi ông bắt đầu liên hệ sự nhìn với môn hình học, tạo ra những cơ sở đầu tiên cho ngành quang hình học. Cuốn sách của ông được viết dựa trên cơ sở của lý thuyết phát tia của Plato và Euclid còn miêu tả các quy tắc toán học của phép phối cảnh cũng như hiệu ứng khúc xạ một cách định tính, mặc dù vậy ông đặt ra nghi vấn rằng chùm tia sáng từ mắt người liệu có thể ngay lập tức làm sáng lên các vì sao chỉ trong nháy mắt. Ptolemy, trong cuốn Quang học của ông đã miêu tả một lý thuyết kết hợp cả hai lý thuyết trên: các tia sáng từ mắt tạo thành một hình nón, với đỉnh nằm trong mắt, và đáy nón xác định lên trường nhìn. Các tia sáng rất nhạy với mọi vật, và chúng mang thông tin chứa hướng và khoảng cách các vật trở lại não của người quan sát. Ông tổng kết lại các kết quả của Euclid và đi đến miêu tả cách đo góc khúc xạ, mặc dù ông đã không nhận ra mối liên hệ giữa góc này với góc tới của tia sáng.

thumb|right|upright|Reproduction of a page of [[Ibn Sahl's manuscript showing his knowledge of the law of refraction, now known as Snell's law]] Trong thời Trung Cổ, các ý tưởng của người Hy Lạp đã được phục hồi và mở rộng trong các văn tự của thế giới Hồi giáo. Một trong những văn tự sớm nhất là của Al-Kindi (khoảng 801–73) viết về các giá trị của những ý tưởng của trường phái Aristote và Euclid về quang học, ủng hộ cho lý thuyết mắt phát tia sáng do có thể dùng nó để miêu tả định lượng các hiện tượng quang học. Năm 984, nhà toán học Ba Tư Ibn Sahl viết luận thuyết "Về cách nung chảy tạo gương và thấu kính", ông đã miêu tả đúng định luật về sự khúc xạ mà có nét tương đương với định luật Snell. Ông sử dụng định luật này nhằm tính toán hình dạng tối ưu cho thấu kính và các gương cầu lõm. Ở đầu thế kỷ 11, Alhazen (Ibn al-Haytham) viết cuốn Sách quang học (Kitab al-manazir) trong đó ông giải thích sự phản xạ và khúc xạ và đề xuất một hệ thống mới giải thích cho khả năng nhìn sự vật và ánh sáng dựa trên các quan sát và thực nghiệm. Ông phê phán "lý thuyết phát tia sáng" của trường phái Ptolemy về mắt người phát ra tia nhìn, mà thay vào đó ông có ý tưởng về ánh sáng phản xạ theo đường thẳng ở mọi hướng từ mọi điểm của vật thể được quan sát và sau đó các tia sáng đi vào mắt, mặc dù ông không thể giải thích đúng đắn làm thế nào để mắt thu nhận được các tia sáng. Công trình của Alhazen phần lớn bị lãng quên trong thế giới Ả Rập nhưng nó đã được một học giả vô danh biên dịch sang tiếng La tinh vào khoảng năm 1200 và sau này nó được thầy tu người Ba Lan Witelo tổng kết và mở rộng đưa nó trở thành một cuốn sách mẫu mực về quang học ở châu Âu trong gần 400 năm tiếp theo.

Ở thế kỷ 13 giám mục người Anh Robert Grosseteste viết một tác phẩm về ánh sáng trên nhiều chủ đề khoa học dưới bốn quan điểm khác nhau: nhận thức luận về ánh sáng, lý luận siêu hình học về ánh sáng, thuyết nguyên nhân hoặc tính chất vật lý của ánh sáng, lý luận thần học về ánh sáng, dựa trên các công trình của các trường phái Aristotle và Plato. Môn đệ nổi tiếng nhất của Grosseteste, Roger Bacon, đã viết những công trình với nguồn trích dẫn phong phú dựa trên các bản dịch thời đó về các nghiên cứu quang học và triết học, bao gồm của Alhazen, Aristotle, Avicenna, Averroes, Euclid, al-Kindi, Ptolemy, Tideus, và Constantine the African. Bacon đã dùng các phần của một khối cầu thủy tinh để làm kính lúp để chứng tỏ ánh sáng phản xạ từ vật thể hơn là phát ra từ chúng.

Kính mắt đầu tiên được phát minh vào khoảng năm 1286 ở Ý. Điều này dẫn tới sự ra đời của ngành công nghiệp quang học với mục đích mài cắt và đánh bóng thấu kính để làm các kính mắt, lúc đầu là ở Venice và Florence vào thế kỷ 13, và sau đó với các trung tâm chế tạo kính quang học ở Hà Lan và Đức. Những nhà chế tạo kính mắt đã cải tiến các loại thấu kính để hiệu chỉnh hình ảnh dựa trên các kinh nghiệm thực tiễn thu được từ các quan sát về hiệu ứng của các thấu kính hơn là từ các lý thuyết quang học thô sơ ngày đó (các lý thuyết hồi đó còn chưa giải thích được kính mắt hoạt động như thế nào). Những phát triển thực tiễn, làm chủ và thí nghiệm với các thấu kính dẫn tới phát minh trực tiếp ra kính hiển vi quang học vào khoảng 1595, và kính thiên văn phản xạ năm 1608, cả hai đều được làm ở các trung tâm sản xuất kính quang học ở Hà Lan.

Đầu thế kỷ 17 Johannes Kepler nghiên cứu mở rộng lĩnh vực quang hình học, bao gồm thấu kính, sự phản xạ từ gương phẳng và gương cầu, nguyên lý chụp ảnh qua lỗ hổng, định luật tỷ lệ nghịch đảo bình phương của cường độ ánh sáng, và cách giải thích quang học cho các hiện tượng thiên văn như nguyệt thực và nhật thực và thị sai. Ông cũng suy luận đúng về vai trò của võng mạc như là một cơ quan ghi nhận hình ảnh, và Kepler có thể đánh giá định lượng một cách khoa học các hiệu ứng mà các nhà quang học quan sát từ hơn 300 năm là do từ các loại thấu kính khác nhau. Sau khi kính thiên văn được phát minh ra, Kepler đã thiết lập cơ sở lý thuyết miêu tả sự hoạt động của chúng và cách để nâng cao khả năng phóng đại của kính thiên văn, mà ngày nay gọi là kính thiên văn Kepler, với hai thấu kính lồi tạo ra sự phóng đại ảnh lớn hơn so với kính thiên văn trước đó.

thumb|right|upright|Bìa của lần xuất bản đầu tiên của cuốn sách của Newton Opticks Lý thuyết về quang học tiến triển trong giữa thế kỷ 17 với công trình của nhà bác học René Descartes, ông giải thích nhiều hiện tượng quang học khác nhau như phản xạ và khúc xạ bằng giả sử ánh sáng được phát ra từ vật tạo ra nó. Điều này khác cơ bản so với quan điểm lý thuyết phát xạ của người Hy Lạp cổ đại. Cuối thập kỷ 1660 và 1670, Newton đã mở rộng ý tưởng của Descartes thành lý thuyết hạt ánh sáng, và ông nổi tiếng với công trình xác định được ánh sáng trắng là tập hợp của các tia sáng đơn sắc mà có thể tách được nhờ một lăng kính. Năm 1690, Christiaan Huygens nêu ra lý thuyết sóng ánh sáng dựa trên đề xuất do Robert Hooke nêu ra vào năm 1664. Chính Hooke đã phê bình lý thuyết của Newton về hạt ánh sáng và sự phản đối giữa hai người kéo dài cho tới tận khi Hooke qua đời. Năm 1704, Newton xuất bản cuốn Opticks và ở thời điểm đó nó đã khá thành công cũng một phần nhờ sự nổi tiếng của Newton trong lĩnh vực vật lý học. Cuộc tranh luận giữa hai người về bản chất của ánh sáng dường như có phần thắng thuộc về Newton thời đó. Quang học sóng đã được thống nhất thành công với lý thuyết điện từ bởi James Clerk Maxwell trong thập kỷ 1860.

Dấu mốc phát triển tiếp theo của quang học là vào năm 1899 khi Max Planck miêu tả đúng mô hình bức xạ vật đen khi giả sử sự trao đổi năng lượng giữa ánh sáng và vật chất chỉ xảy ra dưới những gói rời rạc mà ông gọi là quanta - lượng tử]. Năm 1905 Albert Einstein công bố lý thuyết giải thích hiệu ứng quang điện củng cố thêm cho tính chất lượng tử của ánh sáng. Năm 1913 Niels Bohr chỉ ra rằng các nguyên tử chỉ có thể phát ra lượng năng lượng rời rạc, do vậy ông giải thích được những vạch rời rạc trong quang phổ phát xạ và quang phổ hấp thụ. Hiểu biết về tương tác giữa ánh sáng và vật chất đi theo sự phát triển mới này không những là cơ sở cho ngành quang học lượng tử mà còn có vai trò quan trọng trong sự phát triển của cơ học lượng tử. Lý thuyết điện động lực học lượng tử giải thích mọi hiện tượng và quá trình quang học nói chung là kết quả của sự trao đổi các photon ảo và photon thực.

Quang học lượng tử có được ứng dụng thực tiễn quan trọng kể từ khi phát minh ra maser vào năm 1953 và laser vào năm 1960. Phát triển từ công trình của Paul Dirac về lý thuyết trường lượng tử, George Sudarshan, Roy J. Glauber, và Leonard Mandel đã áp dụng lý thuyết lượng tử cho trường điện từ vào các thập niên 1950 và 1960 và thu được sự hiểu biết sâu sắc hơn về sự tách sóng quang và đặc tính thống kê của ánh sáng.

Quang hình học

Quang hình học có thể chia thành hai nhánh chính: quang hình học và quang học vật lý. Trong quang hình học hay quang học tia sáng, ánh sáng được coi là truyền đi theo đường thẳng, còn trong quang học vật lý hay quang học sóng, ánh sáng được coi là một dạng sóng điện từ.

Quang hình học có thể xem như là một bộ phận của quang học vật lý khi coi bước sóng ánh sáng nhỏ hơn nhiều so với các dụng cụ quang học hoặc đối với các mô hình được áp dụng.

Quang hình học

[[Tập tin:Reflection and refraction.svg|thumb|right|Hình học của các tia sáng phản xạ và khúc xạ ]] Quang hình học, hay quang học tia, miêu tả sự lan truyền của ánh sáng theo định nghĩa của các "tia" đi theo đường thẳng tuân theo các định luật phản xạ và khúc xạ của tia sáng tại chỗ tiếp giáp giữa các môi trường khác nhau. Những định luật này đã được phát hiện bằng thực nghiệm từ năm 984

Các xấp xỉ

Quang hình học thường được đơn giản hóa bằng cách xấp xỉ bàng trục, hay "xấp xỉ góc nhỏ". Các phương trình toán học miêu tả xấp xỉ sẽ trở lên tuyến tính, cho phép các thành phần và hệ quang học được miêu tả theo các ma trận đơn giản. Phương pháp này được miêu tả bởi lý thuyết quang học Gauss và tia bàng trục, cho phép tìm ra các tính chất cơ bản của quang hệ, như hình ảnh, vị trí xấp xỉ và độ phóng đại của vật.

Phản xạ

frame|Hình vẽ phản xạ gương. Phản xạ có thể chia thành hai loại: phản xạ gương và phản xạ khuếch tán. Phản xạ gương miêu tả tính bóng của bề mặt như gương, mà phản xạ tia sáng theo cách đơn giản và tiên đoán được. Điều này cho phép tạo ra ảnh phản xạ thực (ảnh thực) hoặc ngoại suy vị trí của vật (ảnh ảo). Phản xạ khuếch tán miêu tả vật liệu có tính chất mờ đục, không trong suốt như tờ giấy hoặc đá. Sự phản xạ từ những bề mặt chỉ có thể miêu tả một cách thống kê, với sự phân bố chính xác của các tia sáng phản xạ phụ thuộc vào cấu trúc vi mô của vật liệu. Nhiều vật phản xạ khuếch tán có thể miêu tả xấp xỉ theo định luật cosine Lambert, định luật miêu tả các bề mặt có độ chói như nhau khi nhìn dưới một góc bất kỳ. Bề mặt bóng có thể quan sát thấy cả hiện tượng phản xạ gương và phản xạ khuếch tán.

Trong phản xạ gương, hướng của tia phản xạ xác định từ góc của tia tới hợp với tia pháp tuyến, tia vuông góc với mặt phẳng tại điểm tia tới chạm vào mặt phẳng. Các tia tới, tia phản xạ và tia pháp tuyến nằm trong cùng một mặt phẳng, và góc giữa tia tới và tia pháp tuyến bằng góc giữa tia phản xạ và tia pháp tuyến. Đây chính là định luật phản xạ.

Đối với gương phẳng, định luật phản xạ cho biết ảnh của vật là cùng chiều và có cùng khoảng cách từ phía sau tới gương khi vật đặt trước gương. Kích thước ảnh bằng kích thước của vật. Định luật cũng cho thấy ảnh qua gương có tính đảo ngược chẵn lẻ, mà chúng ta cảm nhận như là sự đảo ngược trái phải. Ảnh tạo thành hai (hay từ số chẵn gương) gương không có tính đảo ngược chẵn lẻ. Ánh sáng phản xạ ngược từ các vật phản xạ góc tạo ra các tia phản xạ quay ngược trở lại hướng mà tia tới đến

thumb|Biểu đồ dựng tia cho thấu kính hội tụ.

Một vật dùng để hội tụ hay phân kỳ các tia sáng gọi là thấu kính. Các thấu kính mỏng tạo ra hai tiêu điểm có thể được miêu tả nhờ phương trình thấu kính. Nói chung có hai loại thấu kính: thấu kính lồi có thể hội tụ các tia sáng song song, và thấu kính lõm làm cho các tia sáng song song phân kỳ. Việc miêu tả sự tạo ảnh có thể thu được nhờ phương pháp dựng tia (vẽ ảnh) tương tự như đối với các gương cong. Các thấu kính mỏng có thể được tính toán đơn giản tuân theo phương trình sau xác định lên vị trí của ảnh khi biết tiêu cự (f) của thấu kính và khoảng cách tới vật (S_1):

:\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f}

với S_2 là khoảng cách tới ảnh và được quy ước có giá trị âm khi ảnh nằm cùng phía với vật và có giá trị dương khi ảnh nằm ở phía bên kia vật so với thấu kính. Cho tới năm 1865 sự tồn tại của sóng điện từ mới được biết đến thông qua phương trình Maxwell. Sóng điện từ truyền đi với tốc độ ánh sáng và có điện trường và từ trường biến đổi và vuông góc với nhau, cũng như chúng vuông góc với hướng lan truyền của sóng. Sóng ánh sáng là một loại sóng điện từ và khi nghiên cứu ở cấp độ nguyên tử các tính chất lượng tử của nó mới được thể hiện.

Mô hình và thiết kế hệ thống quang học sử dụng quang học sóng

Có nhiều cách xấp xỉ đơn giản cho thiết kế và phân tích các quang hệ. Đa số sử dụng một đại lượng vô hướng để biểu diễn trường điện từ của sóng ánh sáng, hơn là sử dụng vectơ với các vectơ điện và vectơ từ vuông góc với nhau. Phương trình Huygens–Fresnel là một trong những mô hình như thế. Mô hình này do Fresnel rút ra từ thực nghiệm vào năm 1815, dựa trên giả thuyết của Huygen rằng mỗi điểm nằm trên đầu sóng là nguồn cho các sóng thứ cấp mới; và sự lan truyền của toàn bộ là tổng của các sóng thứ cấp đến từ mọi điểm trong môi trường mà sóng đã đi qua, mà Fresnel kết hợp với nguyên lý giao thoa của sóng. Phương trình Huygens-Fresnel có nền tảng vật lý từ phương trình nhiễu xạ Kirchhoff, mà nó thu được từ phương trình Maxwell. Ví dụ về ứng dụng của nguyên lý Huygens–Fresnel như giải thích các hiện tượng khúc xạ và mô hình khúc xạ Fraunhofer.

Những mô hình phức tạp hơn, bao hàm mô hình về điện trường và từ trường của sóng ánh sáng, đòi hỏi cần thiết khi xét tới tương tác giữa ánh sáng và vật chất nơi tương tác này phụ thuộc vào tính chất điện và tính chất từ của vật chất. Ví dụ, hành xử của ánh sáng tương tác với bề mặt kim loại rất khác với khi nó tương tác với vật liệu điện môi. Mô hình vectơ cũng cần thiết khi giải thích sự phân cực của ánh sáng.

Các kỹ thuật mô phỏng bằng máy tính như sử dụng phương pháp phần tử hữu hạn, phương pháp phần tử biên có thể dùng để mô hình hóa sự lan truyền của ánh sáng trong hệ mà không thể thu được nghiệm giải tích. Những mô hình này đòi hỏi phương pháp số và thường dùng để giải các vấn đề yêu cầu độ chính xác tương đối xấp xỉ so với các nghiệm giải tích thu được.

Tất cả các kết quả của quang hình học có thể rút ra nhờ kỹ thuật của lĩnh vực quang học Fourier mà có thể áp dụng cho nhiều kỹ thuật toán học và phân tích sử dụng trong kỹ thuật âm thanh và xử tín hiệu.

Phương pháp hàm Gauss về sự lan truyền của chùm điện từ là mô hình quang học vật lý bàng trục cho sự lan truyền của bức xạ kết hợp như chùm laser. Kỹ thuật này có tính đến hiện tượng khúc xạ, cho phép tính toán chính xác tỷ lệ một chùm laser mở rộng theo khoảng cách, và kích thước tối thiểu mà chùm có thể tập trung được. Phương pháp hàm Gauss đã bắc cầu nối khoảng cách giữa quang hình học và quang học vật lý.

Chồng chập và giao thoa

Khi không có hiệu ứng phi tuyến, nguyên lý chồng chập được sử dụng để tiên đoán hình dạng của sóng thông qua cách cộng sóng.

thumb|Khi dầu bị tràn, nguyên nhân các mảng màu sắc xuất hiện là do hiện tượng giao thoa ánh sáng ở các lớp dầu mỏng. Nguyên lý Huygens–Fresnel phát biểu rằng mỗi điểm nằm trên đầu sóng là nguồn cho sóng thứ cấp mới, do vậy các đầu sóng có thể tạo ra các phần giao thoa tăng cường hoặc triệt tiêu ở những vị trí khác nhau tạo ra những miền sáng và tối đồng đều và tiên đoán được. Giao thoa kế Michelson là một dụng cụ nổi tiếng nhằm sử dụng hiệu ứng giao thoa để đo một cách chính xác sự phụ thuộc của tốc độ ánh sáng theo hướng lan truyền trong chân không.

Tính chất của các màng mỏng ảnh hưởng trực tiếp tới hiệu ứng giao thoa. Các lớp phủ chống phản xạ dùng để triệt tiêu giao thoa làm giảm tính phản xạ của bề mặt được phủ lớp đó, do vậy giảm thiểu độ lóa và những phản xạ không mong muốn. Trường hợp gioa thoa đơn giản nhất là một lớp mỏng với độ dày bằng một phần tư bước sóng của ánh sáng tới. Sóng ánh sáng phản xạ từ đỉnh của màng và sóng ánh sáng phản xạ từ đáy màng lúc này lệch pha nhau 180°, làm cho giao thoa triệt tiêu. Các sóng chỉ lệch pha nhau đối với từng bước sóng một, mà người ta có thể chọn sóng ở giữa miền phổ khả kiến, trong bước sóng khoảng 550 nm. Các thiết kế phức tạp hơn sử dụng nhiều màng mỏng có thể đạt được triệt tiêu độ phản xạ trên phổ rộng hơn, hoặc độ phản xạ cực thấp cho riêng một bước sóng.

Tính chất giao thoa tăng cường ở các màng mỏng dùng để tạo ra sự phản xạ mạnh ánh sáng ở nhiều bước sóng, mà cũng phụ thuộc vào thiết kế và độ dày của màng. Các lớp này được dùng để tạo ra gương điện môi, màng lọc giao thoa, máy phản xạ nhiệt, và màng lọc màu trong các camera truyền hình màu. Hiệu ứng giao thoa cũng là nguyên nhân của hình ảnh bảy sắc cầu vồng nhìn thấy ở lớp dầu tràn. Cuối thế kỷ này, Robert Hooke và Isaac Newton cũng miêu tả hiện tượng mà ngày nay được biết đến là vành Newton khi quan sát nó qua một thấu kính lồi đặt trên mặt phẳng, trong khi đó nhà thiên văn James Gregory cũng quan sát thấy các vân giao thoa từ lông vũ.

Mô hình quang học vật lý đầu tiên về nhiễu xạ dựa trên nguyên lý Huygens–Fresnel được Thomas Young phát triển vào năm 1803 bằng thí nghiệm giao thoa của ông khi cho ánh sáng đi qua hai khe hẹp nằm gần nhau. Young nhận thấy kết quả ông thu được chỉ có thể giải thích khi hai khe được coi như là hai nguồn sóng chứ không đơn thuần là những khe hở. Năm 1815 và 1818, Augustin-Jean Fresnel thiết lập lên cơ sở toán học của hiện tượng nhiễu xạ đối với các vân giao thoa qua hai khe.

Phương trình này chỉ bị sửa đổi một chút khi xét trường hợp nhiễu xạ qua một khe, hoặc qua nhiều khe, hay đối với cách tử nhiễu xạ chứa rất nhiều khe nằm cách đều nhau.

Nhiễu xạ tia X dựa trên nguyên lý rằng có thể dùng các nguyên tử với khoảng cách rất đều nhau trong dàn tinh thể cỡ vài angstrom để làm cách tử. Để nhìn thấy các phần nhiễu xạ, tia X với bước sóng gần bằng khoảng cách giữa hai nguyên tử gần nhau được chiếu vào tinh thể. Vì tinh thể là cách tử nhiễu xạ có cấu trúc ba chiều, các vân nhiễu xạ biến đổi phụ thuộc vào hai hướng theo như định luật Bragg, và những vân này có đặc trưng duy nhất đối với từng tinh thể và khoảng cách d giữa hai nguyên tử.

Hiện tượng tán sắc và tán xạ

thumb|right|Ảnh động minh họa sự tán sắc ánh sáng thông qua lăng kính. Ánh sáng tần số cao (lam) bị lệch nhiều nhất, và ánh sáng tần số thấp (đỏ) bị lệch ít nhất.

Quá trình khúc xạ diễn ra trong giới hạn quang học vật lý, và khi bước sóng ánh sáng có độ lớn gần bằng khoảng cách đang xét đến thì lúc này xảy ra hiện tượng tán xạ. Loại tán xạ đơn giản nhất là tán xạ Thomson xảy ra khi sóng điện từ bị lệch bởi một hạt. Trong giới hạn tán xạ Thompson, khi bản chất sóng của hạt lấn át, ánh sáng bị tán sắc độc lập với tần số sóng, điều này ngược hẳn với tán xạ Compton khi nó phụ thuộc tần số và có tính chất chi phối bởi cơ học lượng tử, khi ánh sáng thể hiện bản chất hạt rõ hơn. Theo ý nghĩa thống kê, tán xạ đàn hồi của ánh sáng bởi một số lớn hạt có kích cỡ nhỏ hơn bước sóng ánh sáng được biết tới như là quá trình tán xạ Rayleigh trong khi quá trình tương tự đối với tán xạ bởi hạt có kích cỡ tương đương hoặc lớn hơn bước sóng ánh sáng được biết tới là tán xạ Mie với hiệu ứng Tyndall là kết quả được quan sát phổ biến. Một phần nhỏ ánh sáng tán xạ từ nguyên tử hoặc phân tử có thể trải qua tán xạ Raman, khi sự thay đổi tần số là do trạng thái kích thích của nguyên tử hoặc phân tử. Tán xạ Brillouin xảy ra khi tần số ánh sáng thay đổi do vị trí thay đổi theo thời gian và sự chuyển động của vật liệu tỉ trọng lớn.

Sự tán sắc xảy ra khi các tần số ánh sáng khác nhau có vận tốc pha khác nhau, hoặc là do tính chất của vật liệu (tán sắc do vật liệu) hoặc do hình học của ống dẫn sóng quang học (tán sắc do ống dẫn sóng). Hiện tượng tán sắc hay gặp nhất là khi có sự giảm chiết suất cùng với tăng bước sóng, mà có thể quan sát thấy ở đa số vật liệu trong suốt. Hiện tượng này được gọi là "tán sắc thông thường". Nó xảy ra trong mọi chất điện môi, khi bước sóng nằm trong miền mà chất điện môi không hấp thụ ánh sáng. Trong miền bước sóng mà môi trường hấp thụ đáng kể, chiết suất có thể tăng theo bước sóng. Hiện tượng này gọi là "tán sắc dị thường". Đối với môi trường đồng nhất, vận tốc nhóm là

:v_g = c \left(n - \lambda \frac{dn}{d\lambda} \right)^{-1}

với n là chỉ số khúc xạ (chiết suất), c là tốc độ ánh sáng trong chân không. Từ đây thu được công thức đơn giản hơn cho tham số độ trễ tán sắc:

:D = - \frac{\lambda}{c} \, \frac{d^2 n}{d \lambda^2}.

Nếu D nhỏ hơn 0, người ta nói môi trường có tính tán sắc dương hoặc tán sắc thông thường. Nếu D lớn hơn 0, môi trường có tính tán sắc âm. Nếu một xung ánh sáng lan truyền qua môi trường tán sắc thông thường, khi đó thành phần có tần số cao hơn sẽ lan truyền chậm hơn thành phần có tần số thấp hơn. Khi đó xung trở thành xung có tần số tăng dần, tức là tần số tăng theo thời gian. Điều này có nghĩa là phổ thoát ra khỏi lăng kính cho thấy ánh sáng đỏ bị khúc xạ ít nhất và ánh sáng lam và cực tím bị khúc xạ nhiều nhất. Ngược lại, nếu một xung lan truyền qua môi trường có tính sắc dị thường (tán sắc âm), các thành phần có tần số cao hơn sẽ di chuyển nhanh hơn thành phần có tần số thấp hơn, và xung trở thành xung có tần số giảm dần, hay tần số giảm dần theo thời gian.

Kết quả của hiện tượng tán sắc vận tốc nhóm, dù là tán sắc dương hay âm, ảnh hưởng quan trọng tới thời gian trải ra của xung tín hiệu. Điều này khiến cho kỹ thuật xử lý sự tán sắc là cực kỳ quan trọng trong hệ thống viễn thông quang học dựa trên sợi quang học, do nếu sự tán sắc quá lớn thì nhóm xung biểu thị thông tin sẽ trải ra theo thời gian và trộn lẫn nhau, khiến cho rất khó có thể chiết tách được thông tin.

Cách điển hình để xem xét tính phân cực đó là tìm ra hướng của vectơ điện trường khi sóng điện từ lan truyền. Vectơ điện trường của sóng phẳng có thể phân tích thành hai vectơ thành phần bất kỳ vuông góc với nhau ký hiệu là xy (với z là trục của phương truyền sóng). Hình dạng chiếu trên mặt phẳng x-y của vectơ điện trường là đường cong Lissajous miêu tả trạng thái phân cực.

right|thumb|Một thiết bị phân cực thay đổi hướng của ánh sáng phân cực thẳng.
Trong hình này, θ1θ0 = θi.

Có những vật liệu làm giảm biên độ của một số loại sóng phân cực nhất định, mà chúng gần như cản mọi bức xạ theo một loại phân cực như thiết bị lọc phân cực hay kính phân cực. Định luật Malus, đặt theo tên của Étienne-Louis Malus, nói rằng khi chiếu chùm sáng phân cực thẳng vào một thiết bị phân cực hoàn hảo, cường độ I của chùm sáng vượt qua nó được cho bởi

: I = I_0 \cos^2 \theta_i \quad, với :I0 là cường độ của chùm sáng tới, :và θi là góc giữa hướng của ánh sáng phân cực ban đầu với trục của thiết bị phân cực.

Các nghiên cứu chuyên biệt của quang học bao gồm nghiên cứu ánh sáng tương tác như thế nào với vật liệu như trong quang học tinh thể và siêu vật liệu. Những nghiên cứu khác tập trung vào các hiệu ứng của sóng điện từ trong quang học kỳ dị, quang học truyền bức xạ, quang học phi tuyến, quang học thống kê, và kỹ thuật đo lường bức xạ. Thêm vào đó, ngành kỹ thuật máy tính đã thu hút sự chú ý và phát triển của các lĩnh vực như mạch tích hợp quang học, công nghệ thị giác ở máy, và tính toán quang học, mở ra hướng đi triển vọng cho thế hệ máy tính tiếp theo.

Ngày nay, khoa học quang học thuần túy được gọi là khoa học quang học hay vật lý quang học để phân biệt nó với khoa học quang học ứng dụng, mà có thể coi là kỹ thuật quang học. Những lĩnh vực con của kỹ thuật quang học bao gồm kỹ thuật chiếu sáng, quang tử học, và điện tử quang với những ứng dụng thực tiễn như thiết kế thấu kính, sản xuất và kiểm định các thành phần quang học, và kỹ thuật xử lý hình ảnh. Một số lĩnh vực này có liên hệ với nhau, mà đôi khi sự phân biệt giữa các chủ đề chỉ ở thứ hơi khác trong lĩnh vực công nghiệp trên nhiều nơi trên thế giới. Cộng đồng các nhà nghiên cứu trong quang học phi tuyến đã phát triển lớn mạnh từ nhiều thập kỷ kể từ khi phát triển công nghệ laser.

Laser

thumb|Các thí nghiệm với [[laser công suất cao là một phần của nghiên cứu quang học hiện đại.]] Máy phát tia laser là thiết bị phát ra ánh sáng thông qua cơ chế phát xạ kích thích. Thuật ngữ laser là từ viết tắt của Light Amplification by Stimulated Emission of Radiation - Khuếch đại ánh sáng bằng bức xạ kích thích. Ánh sáng laser có độ định hướng cao (tính kết hợp), tức là chùm sáng phát ra hoặc có độ rộng hẹp, độ phân kỳ của chùm thấp, hoặc có thể hội tụ chúng lại nhờ các thiết bị quang học như thấu kính. Bởi vì sóng vi ba cũng có thể bị phát xạ kích thích tương tự như laser, và hiệu ứng maser đã được phát triển đầu tiên, các thiết bị phát ra bức xạ kích thích trong bước sóng vi ba và sóng vô tuyến thường gọi là maser.

thumb|left|Tia laser giúp giảm tác động của khí quyển tới hình ảnh trong quá trình chụp ảnh tại kính thiên văn [[Very Large Telescope|VLT.]]

Công trình hiện thực hóa laser đầu tiên bởi Theodore Maiman tại Phòng thí nghiệm nghiên cứu Hughes vào ngày 16 tháng 5 năm 1960. Lần đầu tiên khi được phát minh ra, người ta gọi chúng là "một giải pháp cho một vấn đề". Kể từ đó, laser đã trở thành nền tảng cho công nghiệp với doanh thu hàng tỷ đô la, với hàng nghìn ứng dụng đa dạng của nó. Ứng dụng của laser có thể thấy ở đời sống thường nhật là ở máy quét mã vạch tại các siêu thị phát minh vào năm 1974. Các đầu đọc đĩa laser, phát minh vào năm 1978, là một sản phẩm thương mại thành công đầu tiên có mặt laser, nhưng phải cho tới năm 1982 khi đầu đọc đĩa compact trang bị laser thì laser mới thực sự trở thành sản phẩm tiêu dùng có mặt tại từng gia đình. Những ổ đĩa quang này sử dụng laser bán dẫn có độ tập trung nhỏ hơn một milimét có thể quét bề mặt đĩa để đọc dữ liệu ghi trên nó. Viễn thông sợi quang học dựa trên laser để truyền lượng lớn thông tin với tốc độ gần bằng tốc độ ánh sáng. Những ứng dụng khác của laser bao gồm máy in laser và bút laser. Trong y học các nhà khoa học sử dụng laser để phẫu thuật không chảy máu, phẫu thuật mắt lazik, và phân lập tế bào bằng laser; trong công nghiệp quốc phòng sự có mặt của laser như ở hệ thống phòng thủ tên lửa, và cảm biến từ xa lidar. Laser cũng sử dụng trong kỹ thuật chụp ảnh toàn ký, bubblegram, trình diễn ánh sáng laser...

Hiệu ứng Kapitsa–Dirac

Hiệu ứng Kapitsa–Dirac làm các chùm hạt bị nhiễu xạ khi gặp sóng đứng ánh sáng. Ánh sáng có thể dùng để định vị vật chất thông qua nhiều hiệu ứng khác nhau.

Ứng dụng

Quang học có mặt trong đời sống hàng ngày. Hệ thống thị giác có mặt ở khắp nơi trong ngành sinh học cho thấy vai trò trung tâm của quang học như là khoa học của một trong năm giác quan. Nhiều người hưởng lợi từ việc đeo kính mắt hoặc kính áp tròng, và quang học được áp dụng để đưa ra nhiều hàng hóa tiêu dùng chất lượng như máy ảnh. Cầu vồng và ảnh mờ ảo (mirage) là các ví dụ cho hiện tượng quang học. Thông tin quang là nền tảng cho các công nghệ Internet và truyền thông.

Mắt người

thumb|right|Mô hình mắt người. Các đặc điểm đề cập đến trong đoạn này là 3. [[cơ mi, 6. đồng tử, 8. giác mạc, 10. thủy tinh thể, 22. dây thần kinh thị giác, 26. điểm vàng (fovea), 30. võng mạc.]]

Một trong những chức năng của mắt người là tập trung ánh sáng lên một lớp các tế bào nhận kích thích ánh sáng gọi là võng mạc, lớp lót nằm phía trong cầu mắt. Sự tập trung được thực hiện bởi một loạt các môi trường trong suốt. Ánh sáng đi vào mắt đi qua môi trường đầu tiên là giác mạc, nó mang lại nhiều công suất quang học của mắt. Ánh sáng tiếp tục đi qua một chất lỏng nằm ngay phía sau giác mạc—khoang phía trước (anterior chamber), rồi đi qua đồng tử. Tiếp đó ánh sáng đi qua thủy tinh thể, cho phép tập trung thêm ánh sáng và điều chỉnh khả năng nhìn gần hay xa của mắt. Sau đó ánh sáng đi qua chất lỏng chứa chủ yếu trong cầu mắt là thủy dịch (vitreous humour), rồi tới võng mạc. Các tế bào nằm phần lớn trong võng mạc nằm ngay sau mắt, ngoại trừ vị trí có dây thần kinh thị giác; hay chính là điểm mù.

Có hai loại tế bào nhận kích thích ánh sáng, đó là tế bào hình nón và tế bào hình que, chúng có độ nhạy khác nhau đối với các loại ánh sáng khác nhau. Tế bào hình que nhạy đối với cường độ ánh sáng trong phạm vi rộng của tần số, do vậy chịu trách nhiệm đối với thị giác đen và trắng (nhìn ban đêm). Tế bào hình que không có tại điểm vàng, vùng võng mạc chịu trách nhiệm cho thị giác trung tâm, và không đáp ứng được đối với sự thay đổi về không gian và thời gian của ánh sáng như tế bào hình nó. Tuy nhiên, số lượng tế bào hình que nhiều hơn 20 lần tế bào hình nón trong võng mạc bởi vì tế bào hình que phân bố trên phạm vi rộng hơn. Nhờ phân bố rộng hơn, tế bào hình que chịu trách nhiệm cho thị giác ngoại biên (peripheral vision).

Ngược lại, các tế bào hình nón ít nhạy sáng hơn, nhưng chúng nhạy chủ yếu đối với ba loại dải tần số ánh sáng khác nhau và do đó có chức năng cảm nhận màu sắc và độ chói (photopic vision). Tế bào hình nón tập trung chủ yếu ở điểm vàng và rất nhạy với độ tinh của màu sắc do đó chúng cho phép phân biệt không gian tốt hơn so với tế bào hình que. Vì tế bào hình nón không nhạy đối với ánh sáng mờ tối bằng tế bào hình que, phần lớn khả năng nhìn ban đêm là ở tế bào hình que. Mặt khác, do các tế bào hình nón tập trung ở điểm vàng, thị giác trung tâm (bao gồm khả năng nhìn để đọc, để thấy các chi tiết nhỏ như xâu kim, hoặc kiểm tra vật thể) là do các tế bào hình nón.

Công suất quang học của kính hiệu chỉnh được đo bằng đi ốp (diopter), giá trị bằng nghịch đảo của tiêu cự đo theo đơn vị mét; với giá trị dương tương ứng với thấu kính hội tụ và giá trị âm tương ứng với thấu kính phân kỳ. Đối với kính dùng cho người loạn thị, có ba thông số cho mắt kính: một cho công suất hình cầu, một cho công suất hình trụ, và một cho góc của hướng loạn thị.

Ảo ảnh nhận thức cũng bao gồm kết quả từ việc không nhận thức được sự áp dụng sai các nguyên lý quang học. Ví dụ, phòng Ames, ảo ảnh Hering, Müller-Lyer, Orbison, Ponzo, Sander, và ảo ảnh Wundt tất cả dựa trên cảm nhận về khoảng cách khi vẽ ra các đường hội tụ hay phân kỳ, theo cách giống với các tia sáng song song (hoặc thực sự là các đường thẳng song song) hiện lên như đang hội tụ tại một điểm nằm ở vô tận trong hình ảnh phối cảnh hai chiều. Hiệu ứng này cũng giải thích cho nghịch lý nổi tiếng là ảo ảnh Mặt Trăng khi Mặt Trăng dường như trông to hơn khi nó ở gần chân trời so với khi nó ở thiên đỉnh. Ptolemy đã sai khi giải thích ảo ảnh này là do sự khúc xạ khí quyển khi ông miêu tả hiện tượng này trong cuốn Optics.

Dụng cụ quang học

Minh họa nhiều dụng cụ quang học khác nhau trong cuốn Cyclopaedia năm 1728.

Các thấu kính đơn lẻ có nhiều ứng dụng khác nhau như thấu kính máy ảnh, thấu kính hiệu chỉnh, và kính lúp trong khi các gương đơn sử dụng như gương parabol và gương chiếu hậu. Bằng cách kết hợp một số loại gương, lăng kính, và thấu kính tạo ra tổ hợp dụng cụ quang học cho phép mở rộng khả năng của từng dụng cụ. Ví dụ, kính tiềm vọng đơn giản chỉ bao gồm hai gương phẳng sắp thẳng hàng cho phép quan sát tránh khỏi vật cản trở. Những dụng cụ quang học nổi tiếng nhất trong khoa học là kính hiển vi quang học và kính thiên văn quang học mà cả hai được người Hà Lan phát minh ra vào cuối thế kỷ 16.

Những kính hiển vi đầu tiên chi có hai thấu kính: một vật kính và một thị kính. Vật kính được làm với tiêu cự rất ngắn có chức năng phóng đại ảnh của vật trong khi nói chung thị kính có tiêu cự lớn hơn. Điều này giúp cho thị kính tạo thêm ảnh phóng đại khi ảnh qua vật kính nằm gần vật được quan sát. Ngoài ra kính hiển vi cần thêm một nguồn chiếu sáng do ảnh phóng đại thường bị mờ do định luật bảo toàn năng lượng và sự phân tán chùm sáng ra một bề mặt diện tích lớn hơn. Kính hiển vi hiện đại, hay kính hiển vi tổ hợp có nhiều thấu kính kết hợp với nhau (thường là bốn) để tối ưu hóa chức năng và nâng cao sự ổn định của ảnh. Ngày nay có rất nhiều loại kính hiển vi khác nhau, dựa trên những nguyên lý của cơ học lượng tử cho phép có độ phân giải vượt qua giới hạn phân giải quang học.

Kính thiên văn đầu tiên, gọi là kính thiên văn khúc xạ cũng chỉ bao gồm một vật kính và thị kính. Ngược lại so với kính hiển vi, vật kính của kính thiên văn được thiết kế có tiêu cự lớn để tránh được quang sai. Vật kính tập trung hình ảnh của một vật ở xa tại tiêu điểm của nó mà được điều chỉnh sao cho nó nằm tại tiêu điểm của thị kính có tiêu cự ngắn hơn. Mục đích chính của kính thiên văn là tập trung càng nhiều ánh sáng đến từ vật thể ở xa càng tốt và điều này xác định bởi độ lớn của vật kính. Do vậy, kính thiên văn thường được thể hiện bằng đường kính của vật kính hơn là độ phóng đại của nó do độ phóng đại có thể thay đổi nhờ cách thay thị kính. Bởi vì độ phóng đại của kính thiên văn khúc xạ bằng tiêu cự của vật kính chia cho tiêu cự của thị kính, thị kính càng có tiêu cự nhỏ thì càng cho độ phóng đại lớn, mặc dù nó cũng có giới hạn riêng.

Nghĩa là, độ mở càng nhỏ (cho độ sâu/mức tập trung của ảnh hơn), ánh sáng đến càng ít, do vậy thời gian phơi sáng phải tăng lên (dẫn đến khả năng ảnh bị nhòe nếu có chuyển động). Ví dụ của luật tương hỗ đó là quy tắc f/16 chụp trong ngày nắng đưa ra ước lượng thô cho các thiết lập cần thiết để có độ phơi sáng thông thường chụp vào ban ngày.

Độ mở của máy ảnh đo bằng đại lượng không thứ nguyên f-số, #, thường ký hiệu là N, and given by :f/# = N = \frac fD \ với f là tiêu cự, và D là đường kính lỗ máy ảnh. Theo quy ước, "#" được coi như bằng một ký hiệu, và giá trị cụ thể của # được viết bằng cách thay # bằng giá trị số. Có hai cách để tăng # là hoặc giảm đường kính của lỗ mở hoặc tăng độ lớn của tiêu cự (trong trường hợp của thấu kính điều chỉnh (ống kính zoom), điều này được thực hiện đơn giản bằng cách điều chỉnh thấu kính). Giá trị f-số cao hơn cũng có nghĩa là độ sâu trường ảnh lớn hơn do thấu kính tiếp cận giới hạn của một máy ảnh đục lỗ (pinhole camera) mà có thể tập trung mọi ảnh một cách hoàn hảo, bất kể khoảng cách, nhưng đòi hỏi thời gian phơi sáng lâu.

Trường nhìn của thấu kính thay đổi theo tiêu cự của thấu kính. Có ba cách phân loại cơ bản dựa trên mối liên hệ giữa kích thước theo đường chéo của phim âm bản hoặc kích cỡ của cảm biến đối với tiêu cự của thấu kính:

Ống kính thường: góc chụp vào khoảng 50° (gọi là thường bởi vì góc này thường là bằng độ rộng tầm nhìn của mắt người Ống kính góc rộng: góc chụp lớn hơn 60° và tiêu cự ngắn hơn ống kính thường. *Ống kính te le: góc chụp nhỏ hơn so với ống kính thường. Các ống kính này có tiêu cự lớn hơn kích thước đường chéo của phim âm bản hay cảm biến CCD. Loại ống kính có tiêu cự lớn phổ biến là ống kính tele, thiết kế sử dụng các thấu kính cho phép tiêu cự tổng hợp ngắn hơn tiêu cự của từng thấu kính.

Các ống kính zoom hiện đại có thể có đặc tính của ba loại ống kính trên.

Giá trị tuyệt đối cho thời gian phơi sáng đòi hỏi phụ thuộc vào độ nhạy ánh sáng của phim âm bản hay cảm biến CCD (đo bởi tốc độ nhạy của phim, hay đối với cảm biến hiện đại đo bằng hiệu suất lượng tử). Thời buổi đầu của nhiếp ảnh, các nhiếp ảnh gia sử dụng các tấm phim âm bản có độ nhạy sáng thấp, do vậy thời gian phơi sáng cũng cần phải dài ngay cả với lần chụp có hỗ trợ của nguồn sáng mạnh. Với sự phát triển của công nghệ, độ nhạy của phim và cảm biến đã được tăng lên đáng kể.

Những kết quả khác từ quang hình học và quang học vật lý cũng áp dụng cho quang học máy ảnh. Ví dụ, khả năng phân giải lớn nhất của một cấu hình camera được xác định bởi giới hạn nhiễu xạ gắn liền với độ rộng của lỗ máy ảnh, hay giới hạn Rayleigh.

Quang học khí quyển

thumb|[[Cầu vồng đôi chụp ở Alaska.]]

Các tính chất quang học độc nhất của khí quyển làm xuất hiện một số các hiện tượng quang học kỳ thú trên thế giới. Màu xanh của nền trời là kết quả trực tiếp của hiện tượng tán xạ Rayleigh làm lệch hướng mạnh các tia sáng có tần số cao (lam) trở lại trường nhìn của người quan sát. Bởi vì ánh sáng xanh da trời bị tán xạ dễ dàng hơn ánh sáng đỏ, Mặt Trời có màu hơi đỏ khi quan sát nó qua lớp khí quyển dày, tại thời điểm Mặt Trời mọc hay Mặt Trời lặn. Nếu có thêm những loại hạt bụi hoặc khí đặc biệt trong khí quyển có thể làm tán xạ tia sáng Mặt Trời ở những góc khác nhau tạo ra bầu trời đầy màu sắc vào thời điểm bình minh hoặc chạng vạng. Các tinh thể băng và các hạt bụi khác trong khí quyển là nguyên nhân tạo ra các hiện tượng như hào quang, ánh hồng ban chiều (afterglow), nhật hoa, tia sáng xuyên mây, và Mặt Trời giả. Sự xuất hiện đa dạng của những hiện tượng này là do kích cỡ khác nhau của các hạt bụi và sự phân bố của chúng trong khí quyển.

Ảo tượng (mirage) là hiện tượng quang học trong đó các tia sáng bị lệch do sự thăng giáng nhiệt trong chỉ số khúc xạ của không khí, tạo ra sự dời ảnh hoặc ảnh bị méo của các vật thể ở xa. Những hiện tượng quang học khác kết hợp với hiện tượng này là hiệu ứng Novaya Zemlya khi Mặt Trời trông như có vẻ mọc sớm hơn so với dự định do hình ảnh méo của nó. Một dạng ảo ảnh kỳ lạ khác kết hợp với hiệu ứng nghịch đảo nhiệt (temperature inversion) là ảo ảnh Fata Morgana khi các vật ở chân trời hoặc thậm chí vượt xa chân trời, như đảo, vách núi, tàu thuyền hay băng trôi dường như bị kéo giãn và nâng lên khỏi chân trời, trông giống như "lâu đài trong cổ tích".

Cầu vồng là kết quả của sự kết hợp giữa phản xạ và khúc xạ tia sáng qua các hạt mưa hoặc hơi nước. Phản xạ của tia sáng qua các hạt mưa tạo ra đường kính góc của một cầu vồng trên bầu trời vào khoảng 40° đến 42° với vòng đỏ nằm ngoài cùng. Hiện tượng cầu vồng đôi xảy ra khi hai tia phản xạ tạo ra đường kính góc là 50,5° đến 54° đối với ánh sáng tím nằm bên ngoài. Bởi vì cầu vồng nhìn thấy ở hướng ngược 180° tính từ tâm cầu vồng so với Mặt Trời, cầu vồng càng rõ khi Mặt Trời ở gần chân trời.

👁️ 5 | 🔗 | 💖 | ✨ | 🌍 | ⌚
thumb|right|Quang học nghiên cứu hiện tượng [[tán sắc của ánh sáng.]] **Quang học** là một ngành của vật lý học nghiên cứu các tính chất và hoạt động của ánh sáng, bao gồm tương tác
thumb|Một [[hào quang 22° quanh Mặt Trăng ở Atherton, CA.]] **Hiện tượng quang học** là bất kỳ sự kiện nào quan sát được là kết quả của sự tương tác giữa ánh sáng khả kiến
**Quang học** là một lĩnh vực vật lý học, chuyên nghiên cứu về ánh sáng, cụ thể la nguồn gốc và cách truyền ánh sáng, cách thức nó biến đổi cùng vời những hiện tượng
thế=Một vầng hào quang 22° quanh Mặt Trời, được nhìn thấy trước trại cơ sở Annapurna, Annapurna, Nepal.|nhỏ|347x347px|Một vầng hào quang 22° quanh Mặt Trời, được nhìn thấy trước trại cơ sở Annapurna, [[Annapurna, Nepal.]]
thumb|1: Thấu kính có quang sai màu nhiều hơn.
2: Thấu kính có quang sai màu ít hơn. Trong quang học, **quang sai** là một đặc tính của các hệ quang học ̣(quang hệ), chẳng hạn
**Thiết bị quang học** hay **dụng cụ quang học** (tiếng Anh: _Optical instrument_) là thiết bị xử lý sóng ánh sáng để phóng to hình ảnh hoặc phân tích sóng ánh sáng (hoặc photon) để
thumb|Quầng sáng Mặt Trăng hay nguyệt hoa thumb|Quầng sáng Mặt Trăng quan sát từ [[Mumbai, Ấn Độ.]] thumb|Quầng sáng Mặt Trời (hay nhật hoa) ngay sau khi Mặt Trời mọc. Trong khí tượng học, **quầng
thumb|The optical system of the [[European Extremely Large Telescope|ELT showing the location of the mirrors.]] **Kỹ thuật quang học** là lĩnh vực nghiên cứu tập trung vào các ứng dụng quang học. Kỹ thuật quang
phải|nhỏ| Cấu trúc của tinh thể KTP, nhìn từ trục b xuống, được sử dụng trong thế hệ sóng hài thứ hai. **Quang học phi tuyến** (**NLO**) là nhánh quang học mô tả hành vi
**Ủy ban Quang học Quốc tế** hay **Ủy ban Quốc tế về Quang học**, viết tắt theo tiếng Anh là **ICO** (International Commission for Optics) là một _tổ chức phi chính phủ quốc tế_ hoạt
Trong thiên văn học, **sao đôi quang học** là trường hợp khi hai ngôi sao (hay tổng quát là hai thiên thể) có vẻ nằm gần nhau khi được quan sát từ Trái Đất. Có
**_Journal of the Optical Society of America_** – JOSA (tạm dịch: _Tập san Hội Quang học Hoa Kỳ_) là một tập san khoa học chuyên về lĩnh vực quang học, xuất bản bởi Hội Quang
**Quang học Fourier** là một phân ngành của quang học xem xét ánh sáng, hay bức xạ điện từ nói chung, trong tính chất sóng của chúng, dựa trên cơ sở phân tích các sóng
**Nhận dạng ký tự quang học** (tiếng Anh: _Optical Character Recognition_, viết tắt là **OCR**), là loại phần mềm máy tính được tạo ra để chuyển các hình ảnh của chữ viết tay hoặc chữ
Trong quang học, **ảo ảnh** là các cảm giác hình ảnh không có thật để lại trong tâm thức khi quan sát một số hình ảnh đặc biệt. Lúc này, thông tin thu thập được
**Quang học lượng tử** là một môn học về ánh sáng có mức năng lượng lượng tử được tìm thấy từ các hiện tượng Bức Xạ Điện Từ, Quang Điện, Phân rã Phóng Xạ Hạt
thumb|[[Kính thiên văn khúc xạ lõm 8 inch tại Trung tâm Khoa học và Vũ trụ Chabot]] **Kính viễn vọng quang học** là một loại kính viễn vọng thiên văn thu thập và tập trung
thumb|right|Một bó sợi quang học **Sợi quang học** là một loại sợi trong suốt, linh hoạt được làm từ thủy tinh (silica) hoặc chất dẻo thấm chất lượng cao, hơi dày hơn sợi tóc người.
nhỏ|Một bóng ma Brocken với một [[Glory (hiện tượng quang học)|vầng glory bao quanh.]] **Bóng ma Brocken** (), còn gọi là **cung** **Brocken** hoặc **bóng ma núi**, là hiện tượng bóng của người quan sát
**Bơm quang học** là một quá trình trong đó ánh sáng được sử dụng để nâng (hay bơm) electron từ một mức năng lượng thấp tới một mức năng lượng cao hơn trong một nguyên
nhỏ|Bảo tàng Quang học Jena **Bảo tàng Quang học Jena** là một bảo tàng về khoa học-công nghệ. Bảo tàng trưng bày những thiết bị quang học từ tám thế kỷ trước. Nó cho thấy
phải|nhỏ|Kính hiển vi thạch học, là một loại [[kính hiển vi quang học được trang bị ống kính phân cực chéo, một ống kính nội soi, và bộ điều tiết (phổ biến là tấm vật
**Thiên văn học quang học** bao gồm nhiều quan sát qua kính viễn vọng nhạy cảm trong phạm vi của ánh sáng khả kiến (kính thiên văn quang học). Nó bao gồm hình ảnh, nơi
**Phát sáng kích thích quang học**, viết tắt là _OSL_ (tiếng Anh: Optically Stimulated Luminescence) là một phương pháp đo liều (dose) do _bức xạ ion hóa_ gây ra . thumb|Vùng [[năng lượng của electron
nhỏ|Hình ảnh của một trang chữ bao gồm các ký tự chữ nổi và các ký tự chữ chìm ở trang bên kia **Nhận dạng quang học chữ nổi Barille** là hoạt động chụp và
**Gương K** là một hệ thống gồm 3 gương phẳng được gắn trên trục động cơ chung chạy song song với tia chính của hệ. Nếu nhìn vào hệ thống song song với các bề
nhỏ|Quang phổ của một ngọn [[lửa, cho thấy ba vạch chính, đặc trưng cho thành phần hóa học của các chất trong ngọn lửa.]] **Quang phổ học** hay **Phổ học** là ngành nghiên cứu về
phải|nhỏ|Bắc cực quang phải|nhỏ|Nam cực quang nhỏ|Bắc cực quang chiếu sáng trên [[hồ Bear (Alaska)|hồ Bear]] nhỏ|Nam cực quang tại châu Nam Cực Trong thiên văn học, **cực quang** là một hiện tượng quang học
**Quang tử học** là ngành khoa học kĩ thuật nghiên cứu về phát và điều khiển ánh sáng, đặc biệt là việc sử dụng ánh sáng để mang thông tin. Vì nó đã vượt ra
**Kính hiển vi quang học** là một loại kính hiển vi sử dụng ánh sáng khả kiến để quan sát hình ảnh các vật thể nhỏ được phóng đại nhờ một hệ thống các thấu
nhỏ|Hình minh họa [[quang học trường gần, với sự nhiễu xạ của ánh phát phát ra từ sợi dò của **kính hiển vi quang học quét trường gần**, cho thấy bước sóng ánh sáng và
**Khuếch đại quang học** hay **khuếch đại tín hiệu quang học** là thiết bị trực tiếp khuếch đại tín hiệu quang học mà không cần phải chuyển đổi nó thành tín hiệu điện. Một bộ
Ngọc opal trên chiếc vòng này là các vi cấu trúc có chu kỳ không gian tạo nên khả năng phát [[ngũ sắc. Đây là một tinh thể quang tử tự nhiên, tuy chưa có
Kính hiển vi huỳnh quang (_Fluorescence microscope_) là một kỹ thuật hiển vi quang học, trong đó sử dụng hiệu ứng phát huỳnh quang của vật mẫu để tạo ra hình ảnh, để nghiên cứu
thumb|Một hào quang 22° quanh [[Mặt Trăng.]] **Hào quang 22°** là một hiện tượng quang học thuộc về các quầng sáng tinh thể băng, dưới dạng một vòng tròn có bán kính góc khoảng 22°
nhỏ|Một vầng vinh quang (glory) bao quanh [[Bóng (hình ảnh)|bóng của một chiếc máy bay. Vị trí của trung tâm vầng vinh quang cho thấy người quan sát đang ở vị trí phía trước cánh
**Quang dẫn** là một hiện tượng quang - điện trong đó vật liệu trở nên dẫn điện hơn do sự hấp thụ bức xạ điện từ như ánh sáng nhìn thấy, tia hồng ngoại, tia
thumb|Một hào quang ngoại tiếp (vòng ngoài) cùng với một [[hào quang 22° (vòng trong).]] thumb|Một hào quang ngoại tiếp (phía trên) cùng với một [[cầu vồng lửa (phía dưới).]] **Hào quang ngoại tiếp** _(Circumscribed
thumb|right|upright|Thiết bị cầu tích hợp (Integrating sphere) được sử dụng để đo quang thông của một nguồn sáng. Trong ngành đo lường quang học, **quang thông** là đại lượng trắc quang cho biết công suất
**Vật lý nguyên tử, phân tử, và quang học (atomic, molecular, and optical physics - AMO)** là môn khoa học nghiên cứu về tương tác vật chất-vật chất và tương tác ánh sáng-vật chất; ở
**Ma trận quang** là những hình ảnh của vật thể qua 2 tấm gương đặt đối diện nhau. Những hình ảnh này được thể hiện bằng tính phản xạ của vật thể. Có khi nào
Nội dung giới thiệu về Quang học kiến trúc gồm các nội dung chính như Kĩ thuật cơ sở của nghệ thuật chiếu sáng, Chiếu sáng tự nhiên, Chiếu sáng nhân tạo.
**Rod** là thuật ngữ liên quan đến việc ghi lại hình ảnh của một số vật thể di chuyển trong không khí với tốc độ cao đến mức có dạng trông như những cái que
phải|nhỏ|Quang dưỡng trên cạn và thủy sinh: thực vật mọc trên một gốc cây đổ trôi nổi trên mặt nước nhiều tảo. **Sinh vật quang dưỡng** là các sinh vật thực hiện bắt giữ photon
**Đại học Nghiên cứu quốc gia ITMO** - _National Research University ITMO_ là một trong số các trường Đại học nghiên cứu quốc gia của Nga. Trường nằm trong số 15 trường tổng hợp của
**Mây dạ quang** hay **mây tầng trung lưu vùng cực** là một hiện tượng tương tự như mây, khá hiếm khi xảy ra ở phần trên của khí quyển Trái Đất, nói chung được nhìn
**Viện phát triển khoa học và công nghệ quốc phòng** (viết tắt **AMST** theo tên tiếng Anh của đơn vị là _Academy of Military Science and Technology_) là một viện nghiên cứu khoa học đa
phải|Hiệu ứng quang điện nhỏ|Heinrich Rudolf Hertz nhỏ|Alexander Stoletov **Hiệu ứng quang điện** là một hiện tượng điện - lượng tử, trong đó các điện tử được thoát ra khỏi nguyên tử (quang điện trong)
**Quảng trường Kim Nhật Thành** hay **Quảng trường Kim Il-sung** là một quảng trường ở quận Trung thành phố Bình Nhưỡng, Cộng hòa Dân chủ Nhân dân Triều Tiên, và được đặt tên theo nhà
**Hiển vi định vị quang hoạt** (Photo-activated localization microscopy - PALM) và **Hiển vi quang học dựng ảnh ngẫu nhiên** (stochastic optical reconstruction microscopy - STORM) là các phương pháp cho phép thu được ảnh