✨Dạng hàng bậc thang

Dạng hàng bậc thang

Trong đại số tuyến tính, dạng bậc thang của một ma trận là hình dạng thu được của nó sau khi thực hiện phép khử Gauss.

Một ma trận ở dạng hàng bậc thang có nghĩa là phép khử Gauss đã được tiến hành trên các hàng của nó, còn dạng cột bậc thang nghĩa là phép khử Gauss đã được tiến hành trên các cột. Nói cách khác, một ma trận ở dạng cột bậc thang nếu ma trận chuyển vị của nó ở dạng hàng bậc thang. Vì thế, từ đây bài viết này chỉ xét dạng hàng bậc thang. Dạng cột bậc thang có các tính chất tương tự dạng hàng bậc thang, và có thể dễ dàng suy ra được bằng cách lấy chuyển vị của ma trận. Một cách cụ thể, một ma trận ở dạng hàng bậc thang nếu:

  • tất cả các hàng của ma trận mà chỉ gồm các số 0 (gọi là hàng zero) đều được đặt ở dưới cùng
  • hệ số chính (hay phần tử chính) của một hàng không phải zero luôn ở phía bên phải của hệ số chính của hàng ngay trên nó.

Một số tài liệu còn thêm điều kiện rằng các hệ số chính phải đều bằng 1.

Hai điều kiện trên kéo theo rằng tất cả các phần tử ở cùng cột và bên dưới hệ số chính đều là 0.

Sau đây là một ví dụ về một ma trận 3×5 ở dạng hàng bậc thang, nhưng chưa phải là ở dạng hàng bậc thang rút gọn (xem ở dưới).

: \left[ \begin{array}{ccccc} 1 & a_0 & a_1 & a_2 & a_3 \ 0 & 0 & 2 & a_4 & a_5 \ 0 & 0 & 0 & 1 & a_6 \end{array} \right]

Từ dạng hàng bậc thang của một ma trận có thể suy ra nhiều tính chất của nó, thí dụ như hạng và hạt nhân.

Dạng hàng bậc thang rút gọn

Một ma trận ở dạng hàng bậc thang rút gọn (còn gọi là dạng chính tắc hàng) nếu nó thỏa mãn ba điều kiện sau:

  • Nó ở dạng hàng bậc thang
  • Phần tử chính của hàng khác 0 đều là 1 (gọi là số 1 chính)
  • Ngoài số 1 chính ra, tất cả các phần tử khác cùng cột với nó đều là 0.

Dạng hàng bậc thang rút gọn của một ma trận có thể được tính bằng phép khử Gauss–Jordan. Không giống như dạng hàng bậc thang, dạng hàng bậc thang rút gọn của một ma trận là duy nhất và không phụ thuộc vào giải thuật được sử dụng để tính nó. Với một ma trận đã cho, mặc dù dạng hàng bậc thang không phải là duy nhất, tất cả các dạng bậc thang và bậc thang rút gọn của ma trận đều có cùng số hàng zero và các phần tử chính của các dạng đều có chỉ số giống nhau. Nếu không, chuyển sang vế phải tất cả các số hạng của các phương trình trừ các số 1 chính, biểu thị các biến chính dưới dạng các hằng số hoặc hàm tuyến tính của các biến còn lại, nếu có.

Mã giả

Mã giả sau đây chuyển đổi một ma trận về dạng hàng bậc thang rút gọn: function ToReducedRowEchelonForm(Matrix M) is lead:= 0 rowCount:= the number of rows in M columnCount:= the number of columns in M for 0 ≤ r < rowCount do if columnCountlead then stop function end if i = r while M[i, lead] = 0 do i = i + 1 if rowCount = i then i = r lead = lead + 1 if columnCount = lead then stop function end if end if end while if ir then Swap rows i and r Divide row r by M[r, lead] for 0 ≤ i < rowCount do if ir do Subtract M[i, lead] multiplied by row r from row i end if end for lead = lead + 1 end for end function Mã giả sau đây chuyển ma trận về dạng hàng bậc thang (chưa rút gọn): function ToRowEchelonForm(Matrix M) is nr:= number of rows in M nc:= number of columns in M

 **for** 0 ≤ r < nr **do**
     _allZeros_:= true
     **for** 0 ≤ _c_ < _nc_ **do**
         **if** M[_r_, _c_] != 0 **then**
             _allZeros_:= false
             **exit for**
         **end if**
     **end for**
     **if** _allZeros_ = true **then**
         In M, swap row _r_ with row _nr_
         _nr_:= _nr_ - 1
     **end if**
 **end for**

 _p_:= 0
 **while** _p_ < _nr_ and _p_ < _nc_ **do**
     **label** nextPivot:
         _r_:= 1
         **while** M[_p_, _p_] = 0 **do** 
             **if** (_p_ + _r_) <= _nr_ then
                 _p_:= _p_ + 1
                 **goto** nextPivot
             **end if**
             In M, swap row _p_ with row (_p_ + _r_)
             _r_:= _r_ + 1
         **end while**
         **for** 1 ≤ _r_ < (_nr_ - _p_) **do** 
             **if** M[_p_ + _r_, _p_] != 0 then
                 _x_:= -M[_p_ + _r_, _p_] / M[_p_, _p_]
                 **for** _p_ ≤ _c_ < _nc_ **do**
                     M[_p_ + _r_, _c_]:= M[_p_, _c_] * _x_ + M[_p_ + _r_, _c_]
                 **end for**
             **end if**
         **end for**
         _p_:= _p_ + 1
 **end while**

end function

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong đại số tuyến tính, dạng **bậc thang** của một ma trận là hình dạng thu được của nó sau khi thực hiện phép khử Gauss. Một ma trận ở dạng **hàng bậc thang** có
thumb **Ruộng bậc thang Banaue** là ruộng bậc thang có niên đại 2000 năm tuổi tại núi Ifugao của Philippines được tổ tiên những cư dân bản địa Batad tạo nên. Người ta cho rằng,
**Ruộng bậc thang Mù Cang Chải** là những ruộng bậc thang nằm trên các sườn núi, lớp nọ gối tiếp lớp kia với diện tích khoảng 2.200 ha ở huyện Mù Cang Chải, Yên Bái.
phải|nhỏ|Các vectơ hàng của một [[Ma trận (toán học)|ma trận. Không gian hàng của ma trận này là không gian vectơ tạo bởi các tổ hợp tuyến tính của các vectơ hàng.]] liên_kết=https://en.wikipedia.org/wiki/File:Matrix_Columns.svg|phải|nhỏ|Các vectơ cột
Trong đại số tuyến tính, hai ma trận được gọi là **tương đương hàng** nếu ta có thể chuyển đổi qua lại giữa chúng bởi một dãy hữu hạn các phép biến đổi hàng sơ
nhỏ|[[Chand Baori, ở làng Abhaneri gần Bandikui, Rajasthan, là một trong những giếng bậc thang sâu nhất và lớn nhất ở Ấn Độ]] nhỏ|Quang cảnh một giếng bậc thang tại [[Fatehpur|Fatehpur, Shekhawati]] nhỏ|_Birkha Bawari_, quang
[CHỐNG TRƠN TRƯỢT] Ghế Tự Lập 2 Tầng Đa Năng Cho Bé-Ghế Bậc Thang Trẻ Em-Ghế Cho Bé Đi Bồn CầuƯU ĐIỂM:- Ghế tự lập 2 tầng giúp các bé thích làm các việc tự
**Hoàng thành Thăng Long** (chữ Hán: 昇龍皇城; Hán-Việt: Thăng Long Hoàng thành) là quần thể di tích gắn với lịch sử kinh thành Thăng Long - Đông Kinh và tỉnh thành Hà Nội bắt đầu
**Bắc Bộ** (hay còn gọi là **miền Bắc**) là một trong 3 miền địa lý của Việt Nam (gồm Bắc Bộ, Trung Bộ và Nam Bộ). Dân cư Bắc Bộ tập trung đông tại Đồng
**Đài Bắc 101** () – hay **Taipei 101**, từng được gọi là **Trung tâm Tài chính Thế giới Đài Bắc** – là một tòa nhà cao tầng có tính dấu mốc tại quận Tín Nghĩa, Đài Bắc,
**Bậc cầu thang** là phần ngang của một bộ cầu thang mà người ta đi bộ trên đó. Bậc cầu thang có thể được làm bằng gỗ, kim loại, nhựa hoặc các vật liệu khác.
[[Tập tin:Koppen World Map Dfc Dwc Dsc Dfd Dwd Dsd.png|thumb|right|upright=1.8|_Khí hậu cận Bắc cực_ trên thế giới ]] **Khí hậu cận Bắc Cực** (còn gọi là **khí hậu cận cực**, **khí hậu cận alpine** hoặc
**WikiConference Bắc Mỹ**, trước đây là **WikiConference USA**, là một hội nghị thường niên do cộng đồng Wikipedia ở Bắc Mỹ tổ chức. Hai sự kiện đầu tiên được tổ chức tại Trường Luật New
Các tiểu vùng địa lý tự nhiên
của miền Bắc Việt Nam
nhỏ|Tây Bắc Bộ (đỏ) trong Việt Nam **Tây Bắc Bộ** là vùng miền núi phía tây của miền Bắc Việt Nam, có chung đường
**Ngân hàng di động** là dịch vụ được cung cấp bởi ngân hàng hoặc tổ chức tài chính khác, cho phép khách hàng của mình thực hiện các giao dịch tài chính từ xa bằng
**Thằng gù ở nhà thờ Đức Bà** (tiếng Anh: _The Hunchback of Notre Dame_) là một phim hoạt hình thứ 34 của hãng hoạt hình Walt Disney vào năm 1996, được công chiếu vào ngày
MÔ TẢ SẢN PHẨMNước hoa whoo mini.Set 2 lọ hồng và vàngMua cả set 2 lọ Lọ nhỏ bé xinh xinh cực đáng yêu. Tiện bỏ túi ví mang theo bên mìnhLọ chai thủy tinh
**Ngân hàng Citibank Việt Nam** là một chi nhánh ngân hàng nước ngoài tại Việt Nam. ## Hoạt động kinh doanh Tại Việt Nam, hoạt động của Citi được chia thành hai mảng chính: _Global
**Ngân hàng Grameen** (tiếng Bengali: গ্রামীণ ব্যাংক) là một tổ chức tài chính vi mô (tiếng Anh: microfinance) khởi đầu tại Bangladesh với mục đích cho vay vốn nhỏ (được gọi tín dụng vi mô;
__NOTOC__ **Hang Thẩm Ồm** là hang ở vùng đất _bản Thẳm_ xã Châu Thuận huyện Quỳ Châu tỉnh Nghệ An, Việt Nam . Hang thuộc loại karst trong núi đá vôi, và là một di
Máy Tẩy Làm Trắng Răng TM-05 Dòng Máy Làm Trắng Và Chăm Sóc Răng Chuyên Nghiệp.Máy Tẩy Làm Trắng Răng có sử Dụng bước Sóng 430nm-490nm (ánh sáng chính) & 395nm 415nm cùng đèn phụ
Máy Tẩy Làm Trắng Răng TM-05 Dòng Máy Làm Trắng Và Chăm Sóc Răng Chuyên Nghiệp.Máy Tẩy Làm Trắng Răng có sử Dụng bước Sóng 430nm-490nm (ánh sáng chính) & 395nm 415nm cùng đèn phụ
Máy Tẩy Làm Trắng Răng TM-05 Dòng Máy Làm Trắng Và Chăm Sóc Răng Chuyên Nghiệp.Máy Tẩy Làm Trắng Răng có sử Dụng bước Sóng 430nm-490nm (ánh sáng chính) & 395nm 415nm cùng đèn phụ
**Sự kiện 11 tháng 9**, còn được gọi là **vụ khủng bố ngày 11 tháng 9**, **cuộc tấn công ngày 11 tháng 9** hay đơn giản là **11/9** (; ở Hoa Kỳ thường được gọi
phải|Du thuyền thăm [[Khu du lịch sinh thái Tràng An]] phải|Tam Cốc mùa lúa chín Phong cảnh [[cố đô Hoa Lư nhìn từ núi Mã Yên]] phải|Động Vái Giời ở [[Thung Nham]] Toàn cảnh Điện
Trong đại số tuyến tính, **hạng** (rank) của một ma trận là số chiều của không gian vectơ được sinh (span) bởi các vectơ cột của nó. Điều này tương đương với số cột độc
**Bắc Kinh** (; ), là thủ đô của nước Cộng hòa Nhân dân Trung Hoa. Thành phố nằm ở miền Hoa Bắc, và là một trong số bốn trực hạt thị của Trung Hoa, với
**Miền Bắc nước Anh** hay **Bắc Anh** () được xem là một khu vực văn hoá riêng. Khu vực trải dài từ biên giới với Scotland tại phía bắc đến gần sông Trent tại phía
**Bắc Giang** là một tỉnh cũ thuộc trung du thuộc vùng Đông Bắc Bộ, Việt Nam. Đây là tỉnh nằm trong quy hoạch vùng thủ đô Hà Nội. Bắc Giang chiếm phần lớn diện tích
thumb|Việc tìm tất cả các [[bộ ba số Pythagoras|tam giác vuông có cạnh nguyên tương đương với việc giải phương trình Diophantos .]] Trong toán học, **phương trình Diophantos** là phương trình đa thức, thường
**Nhà Bắc Ngụy** (tiếng Trung: 北魏朝, bính âm: běi wèi cháo, 386–535), còn gọi là **Thác Bạt Ngụy** (拓拔魏), **Hậu Ngụy** (後魏) hay **Nguyên Ngụy** (元魏), là một triều đại thời Nam Bắc triều trong
phải|Mỗi phần tử của một ma trận thường được ký hiệu bằng một biến với hai chỉ số ở dưới. Ví dụ, a2,1 biểu diễn phần tử ở hàng thứ hai và cột thứ nhất
Trong đại số tuyến tính, **phép khử Gauss** là một thuật toán có thể được sử dụng để tìm nghiệm của một hệ phương trình tuyến tính, tìm hạng (hay rank) của một ma trận,
**Gấu xám Bắc Mỹ** (tên khoa học **_Ursus arctos horribilis_**; tiếng Anh: **Grizzly bear**), còn được gọi là **gấu đầu bạc**, **gấu xám**, hoặc **gấu nâu Bắc Mỹ**, là một **_phân loài khác_** của gấu
Trang này dành cho tin tức về các sự kiện xảy ra được báo chí thông tin trong **tháng 9 năm 2020**. Tháng này, sẽ bắt đầu vào thứ ba, và kết thúc vào thứ
**Bạo động tại Ürümqi, tháng 7 năm 2009** là một loạt các cuộc bạo động kéo dài nhiều ngày, bắt đầu nổ ra vào ngày 5 tháng 7 năm 2009 tại Ürümqi, thủ phủ của
[[Tập tin:Rökstenen - KMB - 16000300014216.jpg|nhỏ|392.997x392.997px| Hòn đá Rök, trên khắc những ký tự của cổ ngữ Rune. Đặt ở Rök, Thụy Điển. ]] **Thần thoại Bắc Âu** bao gồm tôn giáo và tín ngưỡng
**Họ Bấc** (danh pháp khoa học: **Juncaceae**), là một họ khá nhỏ trong thực vật một lá mầm. Hiện tại người ta công nhận khoảng 7-8 chi với khoảng 400-430 loài. Các loài trong họ
**Gấu đen Bắc Mỹ** (danh pháp hai phần: **_Ursus americanus_**) là một loài gấu kích thước trung bình có nguồn gốc ở Bắc Mỹ. Nó là loài gấu nhỏ nhất và phổ biến nhất của
thumb|Bên trong một cửa hàng tiện lợi [[7-Eleven của Nhật Bản]] thumb|Một cửa hàng [[Bodega (store)|bodega tiêu biểu tại New York City]] **Cửa hàng tiện lợi** hay **Cửa hàng tiện ích** là một cửa hàng
nhỏ|phải|Vị trí vùng Bắc Trung Bộ trên bản đồ Việt Nam **Bắc Trung Bộ** là phần phía bắc của Trung Bộ Việt Nam từ Thanh Hóa tới phía bắc Đèo Hải Vân. Vùng Bắc Trung
**Bắc Ninh** là một tỉnh ở Việt Nam, với vị trí nằm trong Vùng thủ đô Hà Nội, Vùng kinh tế trọng điểm Bắc bộ và thuộc vùng Đồng bằng sông Hồng. Bắc Ninh là
thumb|right|Một mẫu [[nấm thu thập được vào mùa hè năm 2008 tại các khu rừng hỗn hợp nằm ở miền Bắc Saskatchewan, gần thị trấn LaRonge, Canada. Đây là ví dụ chứng minh tính đa
**Vương quốc Liên hiệp Anh và Bắc Ireland**, còn được biết đến với tên gọi **Vương quốc Liên hiệp Đại Anh và Bắc Ireland** hoặc **Liên hiệp Vương quốc Anh và Bắc Ireland** (), hay
nhỏ|415x415px|Vùng trung du miền núi phía Bắc trên bản đồ Việt Nam (màu hồng nhạt) **Vùng trung du miền núi phía bắc**, trước năm 1954 còn gọi là **Trung du và thượng du**, là khu
**Biển Bắc** (hay **Bắc Hải**), trước Thế chiến I ở Mỹ còn gọi là Đại dương Đức (_German Ocean_), là một vùng biển ở đông bắc Đại Tây Dương. Biển Bắc giáp Na Uy và
**Bắc Giang** là thành phố tỉnh lỵ cũ của tỉnh Bắc Giang, Việt Nam. ## Địa lý Thành phố Bắc Giang nằm ở phía tây của tỉnh Bắc Giang, cách trung tâm thủ đô Hà
**Cửu Trại Câu**, (, tiếng Tây Tạng: _Sicadêgu_ có nghĩa là "Thung lũng chín làng") là khu bảo tồn thiên nhiên, vườn quốc gia thuộc châu tự trị dân tộc Khương, dân tộc Tạng A
nhỏ|Những người ủng hộ phong trào đòi sự thật về vụ 11 tháng 9 tại một cuộc biểu tình ở [[Los Angeles, tháng 10 năm 2007]] nhỏ|Hai người giữ một biểu ngữ của kiến trúc
Xem **Tháng 12 năm 2020** **Tháng 1 năm 2021** là tháng đầu tiên của năm hiện nay. Tháng bắt đầu vào Thứ Sáu, sẽ kết thúc vào Chủ Nhật sau 31 ngày. ## Thứ 6