✨Vành Euclid

Vành Euclid

Trong toán học, cụ thể hơn là trong đại số giao hoán, một vành Euclid là một miền nguyên cùng với một hàm Euclid cho phép thực hiện phép chia có dư.

Định nghĩa

Một vành Euclid là một vành R cùng với một hàm f (được gọi là hàm Euclid) xác định trên R{0} vào tập các số nguyên không âm thỏa mãn hai điều kiện sau

  • (E1) Nếu và thuộc và khác không, thì tồn tại và trong sao cho với hoặc .
  • (E2) Với mọi cặp và khác 0 trong , .

Tuy nhiên, người ta có thể chỉ ra rằng (E1) là đủ để xác định vành Euclid, vì bất kỳ miền nào cùng với một hàm thỏa mãn (E1) cũng có thể được trang bị một hàm thỏa mãn (E1) và (E2). Thật vậy, với }, ta định nghĩa như sau:

: f(a) = \min_{x \in R \setminus {0\ g(xa)

Từ đó, ta có thể thực hiện phép chia. q được gọi là thương và r được gọi là số dư. Lưu ý rằng một vành có thể có nhiều hàm Euclid; và một hàm Euclid có thể cho nhiều kết quả thương và số dư khả dĩ.

Hàm được gắn với vành Euclid còn được gọi là hàm bậc, hàm định chuẩn, chuẩn, định chuẩn, bậc, hàm gauge,...

Ví dụ

Ví dụ về các vành Euclid bao gồm:

  • Mọi trường đều là vành Euclid. Xác định cho tất cả các số khác không.
  • , vành các số nguyên. Xác định , giá trị tuyệt đối của .
  • , vành các số nguyên Gauss. Xác định , chuẩn của số nguyên Gauss .
👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong toán học, cụ thể hơn là trong đại số giao hoán, một **vành Euclid** là một miền nguyên cùng với một hàm Euclid cho phép thực hiện phép chia có dư. ## Định nghĩa
Trong toán học, **vành** là một trong những cấu trúc đại số cơ bản. Nhiều đối tượng toán học có thể được xem xét như là vành, ví dụ như vành các hàm số liên
**Giải thuật Euclid mở rộng** được sử dụng để giải một phương trình vô định nguyên (còn được gọi là phương trình Đi-ô-phăng) có dạng
ax + by =c
Trong đó a, b, c
Trong toán học, **số nguyên** được định nghĩa một cách thông dụng là một số có thể được viết mà không có thành phần phân số. Ví dụ: 21, 4, 0 và −2048 là các
thumb|Thuật toán Euclid để tìm ước chung lớn nhất (ƯCLN) của hai đoạn thẳng BA và DC, độ dài của cả hai đều là bội của một "đơn vị" độ dài chung. Vì độ dài
Trong lý thuyết số, **bổ đề Euclid** là một bổ đề nắm một thuộc tính cơ bản của số nguyên tố, đó là:
**Bổ đề Euclid** — Nếu một số nguyên tố là ước của tích
nhỏ|Hình 1: Biên của tam giác Reuleaux có độ rộng không đổi được hình thành bằng đường cong dựa trên một tam giác đều. Tất cả các điểm trên cung tròn cách đều với đỉnh
**4354 Euclides** là một tiểu hành tinh vành đai chính, được phát hiện ngày 24 tháng 9 năm 1960 bởi Cornelis Johannes van Houten và Tom Gehrels ở Đài thiên văn Palomar. Nó được đặt
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
Trong lý thuyết số cơ bản, **bổ đề Bézout** được phát biểu thành định lý sau: Nếu d = \gcd(a,b) là ước chung lớn nhất của hai số nguyên không âm ab thì:
Trong toán học, một **cơ sở Gröbner** của một i-đê-an của vành đa thức _K_[_X_,...,_X_] là một tập hợp sinh của i-đê-an này, cùng với một vài thuộc tính bổ sung nhất định. Khái niệm
thumb|[[đồ thị Cayley|Đồ thị Cayley Q8 cho thấy sáu chu trình nhân bởi , và . (Nếu ảnh được mở trong Wikimedia Commons bằng cách nhấn đúp vào nó thì các chu trình có thể
Trong toán học, **định lý cơ bản của số học** (tiếng Anh: Fundamental theorem of arithmetic) hay **định lý phân tích thừa số nguyên tố** (tiếng Anh: Prime factorization theorem) phát biểu rằng mọi số
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
thumb|right|Quang học nghiên cứu hiện tượng [[tán sắc của ánh sáng.]] **Quang học** là một ngành của vật lý học nghiên cứu các tính chất và hoạt động của ánh sáng, bao gồm tương tác
**Hypatia** (sinh 350-370; mất 415) là một triết gia Triết Học Hy Lạp, nhà thiên văn học, và nhà toán học người Hy Lạp, ở Alexandria, Ai Cập, khi đó là một phần của Đế
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
**Đại số** là một nhánh của toán học nghiên cứu những hệ thống trừu tượng nhất định gọi là cấu trúc đại số và sự biến đổi biểu thức trong các hệ thống này. Đây
liên_kết=https://vi.wikipedia.org/wiki/T%E1%BA%ADptin:Scalar_multiplication_by_r=3.svg|phải|nhỏ|250x250px|Phép nhân vô hướng với hệ số bằng 3 kéo dãn vectơ. Trong toán học, **phép** **nhân vô hướng** (_scalar multiplication_) là một trong những phép toán cơ bản để định nghĩa một không gian
Trong toán học, một phép **biến đổi tuyến tính** (còn được gọi là **toán tử tuyến tính** hoặc là **ánh xạ tuyến tính**) là một ánh xạ V \rightarrow W giữa hai mô đun (cụ
nhỏ|Không gian mà chú cua [[còng này (có một càng to hơn bên kia nên là một hình không đối xứng) sinh sống là một mặt Mobius. Lưu ý rằng chú cua biến thành hình
**Không gian tôpô** là những cấu trúc cho phép người ta hình thức hóa các khái niệm như là sự hội tụ, tính liên thông và tính liên tục. Những dạng thường gặp của **không
Trong toán học, các số nguyên _a_ và _b_ được gọi là **nguyên tố cùng nhau** (tiếng Anh: **coprime** hoặc **relatively prime**) nếu chúng có Ước số chung lớn nhất là 1. Ví dụ 5
phải|nhỏ|300x300px|Hệ [[Hệ tọa độ cầu|tọa độ cầu được sử dụng phổ biến trong _vật lý_ . Nó gán ba số (được gọi là tọa độ) cho mọi điểm trong không gian Euclide: khoảng cách xuyên
Nói chung, **toán học thuần túy** là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng. Đây là một loại hoạt động toán học có thể nhận biết được từ thế kỷ 19
Trong toán học, **định lý** **Borsuk-Ulam** khẳng định rằng tất cả các hàm liên tục từ một hình cầu _n_ chiều vào một không gian Euclid _n_ chiều sẽ gửi ít nhất một cặp điểm
Trong đại số tuyến tính, **quy tắc Cramer** là một công thức tường minh cho nghiệm của một hệ phương trình tuyến tính với số ẩn bằng số phương trình, chỉ áp dụng khi hệ
**Galileo di Vincenzo Bonaiuti de' Galilei** (; phiên âm tiếng Việt: **Ga-li-lê**; sinh ngày 15 tháng 2 năm 1564 – mất ngày 8 tháng 1 năm 1642), cũng thường được gọi ngắn gọn là **Galileo**, là
**Lý thuyết số đại số** là một nhánh của lý thuyết số sử dụng các kỹ thuật của đại số trừu tượng để nghiên cứu các số nguyên, các số hữu tỷ và các tổng
Trong hình học phẳng, **đường tròn** (hoặc **vòng tròn**) là tập hợp của tất cả những điểm trên một mặt phẳng, cách đều một điểm cho trước bằng một khoảng cách nào đó. Điểm cho
[[Đĩa bồi tụ bao quanh lỗ đen siêu khối lượng ở trung tâm của thiên hà elip khổng lồ Messier 87 trong chòm sao Xử Nữ. Khối lượng của nó khoảng 7 tỉ lần khối
**Sherlock Holmes** () là một nhân vật thám tử tư hư cấu, do nhà văn người Anh Arthur Conan Doyle sáng tạo nên. Tự coi mình là "thám tử tư vấn" trong các câu chuyện,
**John von Neumann** (**Neumann János**; 28 tháng 12 năm 1903 – 8 tháng 2 năm 1957) là một nhà toán học người Mỹ gốc Hungary và là một nhà bác học thông thạo nhiều lĩnh
nhỏ|phải|Chai Klein nhỏ|phải|[[Felix Klein (1849 - 1925)]] Trong toán học, **chai Klein** (hay **bình Klein**) là một ví dụ cho **mặt không định hướng**, nói cách khác, đó là một bề mặt (một **đa tạp**
Trong lĩnh vực cơ học lượng tử, **ký hiệu bra-ket** là biểu diễn chuẩn dùng để mô tả những trạng thái lượng tử. Nó còn có thể dùng để biểu diễn các vector hoặc hàm