✨Đường đi (lý thuyết đồ thị)
Một đường đi trong G là một dãy luân phiên các đỉnh và cạnh:
( là đỉnh và là cạnh). Trong đồ thị thỏa mãn điều kiện liên kết với cặp đỉnh , nghĩa là: * liên kết với nếu đồ thị có hướng. * liên kết với nếu đồ thị vô hướng.Khi đó ta gọi là đỉnh đầu và là đỉnh cuối của đường đi.
Ví dụ
*Xét đồ thị G (7 đỉnh) vô hướng sau:* Đồ thị G Dãy các đỉnh: 1 e2 4 e10 5 là một đường đi Đỉnh đầu: 1 * Đỉnh cuối: 5 Dãy các đỉnh: 4 e10 5 e9 3 e12 7 là một đường đi Đỉnh đầu: 4 Đỉnh cuối: 7
Dây chuyền
- Cho đồ thị G=(X, U).
- Một dây chuyền trong đồ thị (G) là một dãy luân phiên các đỉnh và cạnh:
x1 u1 x2 u2... xm-1 um-11 xm (xi là đỉnh và ui là cạnh)
- Trong đồ thị thỏa mãn điều kiện ui, liên kết với cập đỉnh (xi, xi+1) không phân biệt thứ tự nghĩa là:
ui =(xi, xi+1) hay ui = (xi+1, xi) nếu đồ thị có hướng,
ui = {xi, (xi+1)} nếu đồ thị vô hướng.
- Khi đó ta gọi x1 là đỉnh đầu và xm là đỉnh cuối của dây chuyền.
Tính chất "đơn" và "sơ cấp" của đường đi và dây chuyền trong đồ thị
- Tính chất "đơn" của dây chuyền hay đường đi yêu cầu không có cạnh nào xuất hiện hai lần trong dây chuyền hay đường đi đó.
- Tính chất "sơ cấp" (hay cũng gọi là "thứ cấp") yêu cầu không có đỉnh nào xuất hiện hai lần.
Chu trình và Mạch
- Một chu trình trong đồ thị là một dây chuyền đơn mà có đỉnh đầu trùng đỉnh cuối, tức la dây chuyền có dạng: x1 u1 x2 u2… xm-1 um-1 xm um x1
sao cho các cạnh u1, u2,…,um đôi một khác nhau.
- Một mạch trong đồ thị là một đường đi đơn mà có đỉnh đầu trùng đỉnh cuối, tức là đường đi có dạng: x1 u1 x2 u2… xm-1 um-1 xm um x1
sao cho các cạnh u1, u2,…,um đôi một khác nhau. Từ các định nghĩa trên, ta có các khái niệm sau đây thường được dùng trong lý thuyết đồ thị:
Dây chuyền sơ cấp
- Dây chuyền sơ cấp là dây chuyền không có đỉnh lập lại.
Đường đi sơ cấp
- Đường đi sơ cấp là đường đi không có đỉnh lập lại.
Chu trình sơ cấp
- Chu trình sơ cấp là đường đi không có đỉnh lập lại (ngoại trừ đỉnh đầu và đỉnh cuối).
Mạch sơ cấp
- Mạch sơ cấp là mạch không có đỉnh lập lại (ngoại trừ đỉnh đầu và đỉnh cuối).
👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
} ## Bối cảnh thực tế Bài toán tìm đường đi ngắn nhất giữa hai đỉnh của đồ thị liên thông có nhiều ứng dụng thực tế như: * Bài toán chọn hành trình
Một đường đi trong G là một dãy luân phiên các đỉnh và cạnh: ( là đỉnh và là cạnh). Trong đồ thị thỏa mãn điều
nhỏ|phải|Hình vẽ một đồ thị có 6 đỉnh và 7 cạnh Trong toán học và tin học, **lý thuyết đồ thị** (tiếng Anh: _graph theory_) nghiên cứu các tính chất của đồ thị. Một cách
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
phải|khung|Một cây có dán nhãn với 6 đỉnh và 5 cạnh **Cây** là khái niệm quan trọng trong lý thuyết đồ thị, cấu trúc dữ liệu và giải thuật. Cây là một đồ thị mà
:_Bài này chỉ viết về các định nghĩa cơ bản. Để hiểu rộng hơn, xin xem lý thuyết đồ thị. Về ý nghĩa biểu diễn hàm số trên hệ tọa độ, xem đồ thị hàm
nhỏ|phải|[[Đồ thị Petersen có sắc số bằng 3.]] Trong Lý thuyết đồ thị, **tô màu đồ thị** (tiếng Anh: _graph coloring_) là trường hợp đặc biệt của gán nhãn đồ thị, mà trong đó mỗi
nhỏ Trong lý thuyết đồ thị, **bài toán đường đi ngắn nhất nguồn đơn** là bài toán tìm một đường đi giữa hai đỉnh sao cho tổng các trọng số của các cạnh tạo nên
**Truyền thuyết đô thị Nhật Bản** là những câu chuyện được lưu truyền trong dân gian Nhật Bản và được cho là có thật, dù chưa có bằng chứng xác thực. Những truyền thuyết đô
nhỏ|[[Trường Trung học phổ thông Nguyễn Thị Minh Khai, một địa điểm gắn liền với truyền thuyết đô thị Việt Nam về hồn ma áo tím.]] **Truyền thuyết đô thị Việt Nam** là những câu
Trong lý thuyết đồ thị, một **đồ thị phẳng** là một đồ thị có thể được nhúng vào mặt phẳng, tức là có thể được vẽ trên mặt phẳng sao cho các cạnh chỉ gặp
nhỏ|phải|Hỏi: Các hình này có vẽ được một nét không? Trả lời: Được! Nhưng điểm cuối không trùng điểm xuất phát Trả lời: Được! Và điểm cuối trùng điểm xuất phát Trong lý thuyết đồ
**Đường đi Hamilton** có nguồn gốc từ bài toán: "Xuất phát từ một đỉnh của khối thập nhị diện đều hãy đi dọc theo các cạnh của khối đó sao cho đi qua tất cả
Tính liên thông (connectivity) là một trong những tính chất quan trọng nhất của đồ thị nói riêng và lý thuyết đồ thị nói chung. ## Định Nghĩa Một đồ thị được gọi là liên
nhỏ | _[[Trẻ em mắt đen_, một trong những truyền thuyết thành thị nổi tiếng nhất trên thế giới.]] **Truyền thuyết đô thị** (còn gọi là **truyền thuyết thành thị**, **truyền thuyết thời hiện đại**;
Trong lý thuyết đồ thị, đồ thị **Petersen** là 1 đồ thị vô hướng với 10 đỉnh và 15 cạnh. Nó thường được sử dụng làm minh họa trong khi trình bày các lý thuyết
Cuốn sách Lý thuyết đồ thị và ứng dụng cài đặt bởi ngôn ngữ mạnh PYTHON gồm nội dung như sau Chương 1 Các định nghĩa, phân loại và một số khái niệm cơ bản
Trong đồ thị này, đường đi rộng nhất từ Maldon tới Feering có chiều rộng 29, và đi qua Clacton, Tiptree, Harwich, và Blaxhall. **Bài toán đường đi rộng nhất**, còn gọi là **bài toán
phải|Một hành trình của quân mã trên bàn cờ. phải|Lời giải bài toán trên bàn cờ 5 x 5. **Mã đi tuần** hay **hành trình của quân mã** (Tiếng Anh: Knight's tour) là bài toán
Trong lý thuyết đồ thị, có hai định lý được gọi là **định lý Dirac** (tiếng Anh: _Dirac's theorem_), cả hai đều được đặt theo tên nhà toán học Gabriel Andrew Dirac: :1. Cho _G_
Trong lý thuyết đồ thị, **định lý Kirchhoff**, hay **định lý Kirchhoff cho ma trận và cây**, đặt tên theo Gustav Kirchhoff, là một định lý về số cây bao trùm của một đồ thị.
Trong toán học, **đồ thị đối ngẫu** của một đồ thị mặt phẳng G là một đồ thị G' trong đó có một đỉnh tương ứng cho mỗi miền mặt phẳng của đồ thị G,
vừa|phải|Với _n_ bằng 5 Một đồ thị có e đỉnh, và có thể gán nhãn cho mỗi đỉnh với một số tự nhiên bất kỳ nằm giữa 0 và e sao cho: * mỗi đỉnh
## Đồ thị tăng luồng * Giả sử f là một luồng trên mạng G = (V, E). Từ mạng G = (V, E) ta xây dựng đồ thị có trọng số trên cung Gf
nhỏ|[[Đồ thị Cayley của nhóm tự do có hai phần tử sinh. Đây là nhóm hyperbol có biên Gromov là tập Cantor. Tương tự với đồ thị Cayley, nhóm hyperbol và biên của nó là
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
Trong hình học đại số và vật lý lý thuyết, **đối xứng gương** là mối quan hệ giữa các vật thể hình học được gọi là những đa tạp Calabi-Yau. Các đa tạp này có
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Lý thuyết trò chơi**, hoặc gọi **đối sách luận**, **lí luận ván cờ**, là một phân nhánh mới của toán học hiện đại, cũng là một môn học trọng yếu của vận trù học, tác
nhỏ|Nếu người bán hàng xuất phát từ điểm A, và nếu khoảng cách giữa hai điểm bất kì được biết thì đâu là đường đi ngắn nhất mà người bán hàng có thể thực hiện
Khái niệm của vòng phản hồi dùng để điều khiển hành vi động lực của hệ thống: đây là phản hồi âm, vì giá trị cảm biến (sensor) bị trừ đi từ giá trị mong
**Lý thuyết về ràng buộc** (TOC) là một mô hình quản lý mà quan sát bất kỳ hệ thống quản lý nào bị giới hạn trong việc đạt được nhiều mục tiêu hơn bởi một
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
Phong cảnh cố đô nhìn từ núi Mã Yên Cửa Đông vào [[đền Vua Đinh Tiên Hoàng]] **Quần thể di tích Cố đô Hoa Lư** là hệ thống các di tích về kinh đô Hoa
right|thumb|Đồ thị Cayley của [[nhóm tự do trên hai phần tử sinh _a_ và _b_]] Trong toán học, **đồ thị Cayley**, hay còn gọi là **đồ thị tô màu Cayley**, **biểu đồ Cayley**, **biểu đồ
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
**Lý thuyết dòng chảy đa bước trong truyền thông** chỉ ra rằng thông tin từ phương tiện truyền thông đại chúng đến những người dẫn dắt ý kiến trước đến cộng đồng và dòng chảy
**Lý thuyết chu kỳ kinh tế thực (lý thuyết RBC)** là một loại mô hình kinh tế vĩ mô tân cổ điển, trong đó các biến động của chu kỳ kinh doanh được tính bằng
**Lý thuyết Ứng đáp Câu hỏi** (Item Response Theory - IRT) là một lý thuyết của khoa học về đo lường trong giáo dục, ra đời từ nửa sau của thế kỷ 20 và phát
**Lý thuyết mã hóa** là nghiên cứu về các đặc tính của mã và khả năng thích ứng với các ứng dụng cụ thể của chúng. Mã được sử dụng cho nén dữ liệu, mật
Trong vật lý lý thuyết, **Lý thuyết trường lượng tử** (tiếng Anh: **quantum field theory**, thường viết tắt QFT) là một khuôn khổ lý thuyết để xây dựng các mô hình cơ học lượng tử
**Các lý thuyết về nguyên nhân của sự nghèo đói** là nền tảng cho các chiến lược xóa đói giảm nghèo. Trong khi ở các quốc gia phát triển, sự nghèo đói thường bị coi
Trong lý thuyết tập hợp và các ứng dụng của nó quanh toán học, **lớp** là họ của các tập (và đôi khi trên cả các đối tượng toán học khác) và được định nghĩa
**Lý thuyết dòng chảy hai bước trong truyền thông** chỉ ra rằng hầu hết mọi người hình thành quan điểm của họ dưới sự ảnh hưởng của những người dẫn dắt ý kiến (opinion leaders).
**Lý thuyết gán nhãn hiệu** (tiếng Anh: Labeling Theory) là một lý thuyết xã hội học nghiên cứu hành vi ứng xử của con người theo phương pháp phân tích tương tác biểu tượng qua
**Phương pháp Đường găng** hay **Phương pháp Đường găng CPM**, **Sơ đồ mạng CPM**, (tiếng Anh là _Critical Path Method_, viết tắt là CPM) loại kỹ thuật phân tích mạng tiến độ, công cụ quan
khung|phải|Bản đồ Königsberg thời Euler, mô tả vị trí thực của bay cây cầu và sông Pregel. **Bài toán bảy cây cầu Euler**, còn gọi là **Bảy cầu ở Königsberg** là bài toán nảy sinh
[[Tập tin:Heckscher-Ohlin 4.svg|thumb|Có hai quốc gia A và B với các yếu tố sản xuất khác nhau. Trước khi có thương mại, Nước A sản xuất tiêu dùng tại điểm còn nước B tại
Trong lý thuyết đồ thị, một **luồng trên mạng**, thường được gọi tắt là **luồng**, là một cách gán các luồng (dòng chảy) cho các cung của một đồ thị có hướng (trong trường hợp
**Sơ đồ mạng** hay **phương pháp sơ đồ mạng** (tiếng Anh: Network diagram) là các phương pháp áp dụng lý thuyết đồ thị, cụ thể là cấu trúc mạng lưới (một dạng đồ thị có