✨Các định lý bất toàn của Gödel

Các định lý bất toàn của Gödel

Các định lý bất toàn của Gödel, hay gọi chính xác là Các định lý về tính bất hoàn chỉnh của Gödel (tiếng Anh: Gödel's incompleteness theorems, tiếng Đức: Gödelscher Unvollständigkeitssatz), là hai định lý nổi tiếng về logic toán học mô tả về giới hạn vốn có của mọi hệ tiên đề hình thức có khả năng mô hình hóa số học cơ bản. Những định lý được Kurt Gödel xuất bản vào năm 1931, rất quan trọng trong logic toán học và triết học của toán học. Những định lý này được diễn giải rộng rãi nhưng không phải phổ quát, rằng mục tiêu chương trình Hilbert nhằm tìm một hệ tiên đề hoàn chỉnh và nhất quán cho toàn bộ toán học là điều không tưởng.

Định lý bất toàn đầu tiên đã xác định rằng không có hệ thống nhất quán các tiên đề nào mà các định lý của nó có thể được liệt kê bằng một thủ tục hiệu quả (nói cách khác là một thuật toán) lại có thể chứng minh tất cả các sự thật về việc tính toán của các số tự nhiên. Đối với bất kỳ hệ hình thức nhất quán nào, sẽ luôn có các mệnh đề về các số tự nhiên là đúng, nhưng không thể chứng minh được bằng hệ thống này. Định lý bất toàn thứ hai là mở rộng của định lý bất toàn thứ nhất, chứng minh rằng hệ thống đó không thể chứng tỏ được chính tính nhất quán của mình.

Sử dụng tranh luận đường chéo của Cantor, các định lý bất toàn của Gödel là hai trong số những định lý đầu tiên có mối liên hệ gần gũi với sự giới hạn của các hệ hình thức. Các định lý này được nối tiếp bởi định lý bất khả định của Tarski về sự bất khả định hình thức của sự thật, định lí của Alonzo Church rằng Entscheidungsproblem của David Hilbert là không thể giải quyết được và định lý của Alan Turing rằng không có thuật toán nào để giải quyết các Bài toán dừng.

Hệ hình thức: sự hoàn chỉnh, sự nhất quán và sự tiên đề hóa hiệu quả

Các định lý bất toàn được ứng dụng cho các hệ hình thức có đủ độ phức tạp để biểu diễn phép toán cơ bản trên số tự nhiên và đồng thời có tính nhất quán và được tiên đề hóa một cách hiệu quả. Cụ thể là trong khuôn khổ của logic bậc nhất, các hệ hình thức cũng được gọi là các lý thuyết hình thức. Nhìn chung, một hệ hình thức là một công cụ để suy diễn, bao gồm một tập hợp các tiên đề cụ thể với quy tắc sử dụng các ký hiệu (hoặc quy tắc suy luận), cho phép rút ra một định lý mới từ các tiên đề. Một ví dụ là số học Peano bậc nhất, một hệ thống mà tất cả các biến được sử dụng để biểu diễn các số tự nhiên. Trong các hệ thống khác, như lý thuyết tập hợp, chỉ một vài câu của hệ hình thức diễn tả mệnh đề về các số tự nhiên. Các định lý bất toàn nói về khả năng chứng minh hình thức với những hệ thống này, hơn là nói về khả năng chứng minh theo cách hiểu thông thường.

Có một vài đặc tính mà một hệ hình thức có thể có, bao gồm sự hoàn chỉnh, sự nhất quán và sự tồn tại của sự tiên đề hóa hiệu quả. Các định lý bất toàn chỉ ra rằng một hệ thống bao gồm một số lượng số học hữu hạn không thể thỏa mãn đồng thời ba đặc tính này.

Sự tiên đề hóa hiệu quả

Một hệ hình thức được cho là được tiên đề hóa một cách hiệu quả (hay còn gọi là được sinh ra một cách hiệu quả) nếu như tập hợp các định lí của nó là đếm được đệ quy.

Điều đó có nghĩa là có một chương trình tính toán mà về nguyên lý có thể liệt kê danh sách tất cả các định lý của hệ thống mà không bao gồm bất kỳ mệnh đề nào không phải là định lý. Ví dụ về lý thuyết được đề ra một cách có hiệu quả là số học Peano và lý thuyết tập hợp Zermelo–Fraenkel (ZFC).

Lý thuyết được biết đến là số học chính xác bao gồm tất cả các mệnh đề đúng về số nguyên tiêu chuẩn trong ngôn ngữ của số học Peano. Lý thuyết này nhất quán, hoàn chỉnh, và bao gồm một số lượng vừa đủ các tiên đề. Tuy nhiên nó không có hệ tiên đề đếm được đệ quy vì thế không thỏa mãn giả thuyết của định lý bất toàn.

Sự hoàn chỉnh

Một tập hợp các tiên đề là hoàn chỉnh nếu như, đối với bất kỳ trường hợp nào trong ngôn ngữ của tiên đề, mệnh đề đó hoặc phủ định của nó là chứng minh được bằng các tiên đề đó. Đây là định nghĩa liên quan tới định lý bất toàn thứ nhất của Gödel. Không nên nhầm lẫn với sự hoàn chỉnh về mặt ngữ nghĩa với ý nghĩa là hệ tiên đề chứng minh được tất cả các hằng đúng của ngôn ngữ được nêu. Trong định lý hoàn chỉnh, Gödel đã chứng minh rằng logic bậc nhất là hoàn chỉnh về mặt ngữ nghĩa. Nhưng nó không hoàn chỉnh về mặt cú pháp, bởi vì có rất nhiều mệnh đề có thể diễn đạt trong ngôn ngữ của logic bậc nhất lại không thể được chứng minh hay không được chứng minh chỉ từ các tiên đề của logic.

Trong một hệ thống logic đơn thuần, sẽ thật vô lý nếu kỳ vọng vào sự hoàn chỉnh trong cú pháp. Nhưng trong một hệ thống toán học, những nhà tư tưởng như Hilbert tin rằng đó chỉ là vấn đề thời gian để tìm ra cách tiên đề hóa cho phép chứng minh hoặc bác bỏ (bằng cách chứng minh phủ định của nó) mọi công thức toán học.

Một hệ hình thức có thể không hoàn chỉnh về mặt cú pháp bởi thiết kế vốn dĩ của nó, chẳng hạn như là logic về mặt tổng quát. Hoặc có thể không hoàn chỉnh đơn giản là vì không phải tất cả các tiên đề cần thiết được khám phá hay thêm vào. Ví dụ, hình học Euclid với tiên đề song song là không hoàn chỉnh, bởi vì có vài mệnh đề trong hình học này không thể chứng minh bằng các tiên đề đang tồn tại. Tương tự như vậy, lý thuyết về thứ tự tuyến tính dày đặc không hoàn chỉnh, nhưng trở nên hoàn chỉnh với một tiên đề bổ sung cho rằng sẽ không có điểm kết thúc trong thứ tự này. Giả thuyết continuum là một mệnh đề trong ngôn ngữ của ZFC, nó không thể được chứng minh với lý thuyết này. Vì vậy, ZFC không hoàn chỉnh. Trong trường hợp này, không có một đề xuất hiển nhiên nào cho một định đề giải quyết được vấn đề.

Lý thuyết số học Peano bậc nhất dường như là nhất quán. Giả sử đúng như vậy, ta còn biết rằng nó có một tập hợp vô hạn các tiên đề nhưng lại đếm được đệ quy, và có thể mã hóa đủ lượng số học cho giả thuyết của định lý bất toàn. Vì thế, bằng định lý bất toàn thứ nhất, số học Peano là không hoàn chỉnh. Định lý đã cho một ví dụ rõ ràng về một mệnh đề của số học không thể được chứng minh hay không được chứng minh trong số học Peano. Hơn nữa, mệnh đề này là đúng trong mô hình thông thường. Thêm vào đó, không có sự mở rộng nhất quán, được tiên đề hóa một cách hiệu quả nào của số học Peano có thể là hoàn chỉnh.

Sự nhất quán

Tập hợp các tiên đề là nhất quán nếu như không có mệnh đề nào mà cả nó và phủ định của nó là chứng minh được bằng các tiên đề, và mâu thuẫn nếu ngược lại.

Sự nhất quán của số học Peano có thể chứng minh được bằng lý thuyết ZFC, nhưng không thể chứng minh được bằng chính nó. Tương tự như vậy với trường hợp của ZFC. Tuy nhiên ZFC kết hợp với "Tồn tại một số đếm không tới được" chứng minh ZFC là nhất quán bởi vì nếu κ là một số đếm nhỏ nhất thỏa mãn điều đó, thì Vκ đặt trong vũ trụ von Neumann là một mô hình của ZFC. Và một lý thuyết nhất quán khi và chỉ khi nó có một mô hình.

Nếu có một lý thuyết biến tất cả các mệnh đề trong số học Peano thành các tiên đề, thì lý thuyết đó là hoàn thiện, và có một hệ đệ quy các tiên đề và có thể mô tả phép cộng và phép nhân. Tuy nhiên, nó không nhất quán.

Một số ví dụ khác về lý thuyết không nhất quán tới từ các nghịch lý xuất hiện khi sơ đồ tiên đề bao quát không hạn chế được giả định trong lý thuyết tập hợp.

Về việc áp dụng định lý bất toàn trong các lĩnh vực khác

Một số lập luận phản biện và lập luận tương tự (analogy) đôi khi đưa ra các định lý không hoàn chỉnh để hỗ trợ các giả thuyết có chủ đề vượt ra ngoài phạm vi áp dụng của các định lý là toán học và logic. Ví dụ như chủ đề Nguồn gốc vũ trụ và Tiến hóa, để củng cố cho thần học, một số sự hiểu lầm những định lý này dẫn đến khả năng tồn tại những vấn đề không thể giải thích cặn kẽ bằng logic khoa học - chúng có thể là căn cứ để "chứng minh" một thế lực mà sự tồn tại vượt ngoài phạm vi logic và là cơ sở cho thuyết Tạo hóa (Creationism); hay trong để chống lại chủ nghĩa hiện thực trong triết học.

Tuy nhiên thực tế đa số lập luận trên là siêu hình, và xuất phát từ việc không hiểu rõ rằng hệ logic áp dụng phải là hệ hình thức (xem định nghĩa ở trên) chứ không phải là toàn bộ mọi hệ logic và mọi lĩnh vực. Lí do có thể là họ quy chụp, nhầm lẫn hoặc thừa nhận một mệnh đề phát biểu không chính xác giả thiết của các định lý; và một số tác giả uy tín đã có bình luận trái chiều về việc mở rộng phạm vi áp dụng và giải thích, lập luận như vậy, bao gồm: Torkel Franzén (2005); Panu Raatikainen (2005); Jean Bricmont (1999); và Ophelia Benson và Jeremy Stangroom (2006). Một số sách của các tác giả trên cũng hướng dẫn cách hiểu chính xác.

Bricmont và Stangroom (2006, trang 10), ví dụ, trích dẫn từ những bình luận của Rebecca Goldstein về sự khác biệt rõ ràng giữa chủ nghĩa Platon mà Gödel thừa nhận và những tư tưởng chống chủ nghĩa hiện thực mà đôi khi có trong những ý tưởng của ông đưa ra. Sokal và Bricmont (1999, trang 187) chỉ trích Régis Debray trong việc ông ta đã áp dụng định lý trong bối cảnh xã hội học; tuy vậy sau đó Debray đã phản biện rằng việc sử dụng này của ông ta chỉ là phép ẩn dụ chứ không có ý định áp dụng sai (sđd.).

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Các định lý bất toàn của Gödel**, hay gọi chính xác là **Các định lý về tính bất hoàn chỉnh của Gödel** (tiếng Anh: **Gödel's incompleteness theorems**, tiếng Đức: **Gödelscher Unvollständigkeitssatz**), là hai định lý
**Các bài toán của Hilbert** là một danh sách gồm 23 vấn đề (bài toán) trong toán học được nhà toán học Đức David Hilbert đưa ra tại Hội nghị toán học quốc tế tại
**Logic toán** là một ngành con của toán học có liên hệ gần gũi với cơ sở toán học, khoa học máy tính lý thuyết, logic triết học. Ngành này bao gồm hai phần: nghiên
**Oleksiy Hryhorovych Ivakhnenko** ( ; sinh ngày 30 tháng 3 năm 1913 – mất ngày 16 tháng 10 năm 2007) là một nhà toán học, nhà khoa học máy tính Liên Xô và Ukraine.
**Kurt Gödel** (28 tháng 4 năm 1906 – 14 tháng 1 năm 1978) là một nhà toán học và logic học nổi tiếng người Áo, người đã được tờ tạp chí danh tiếng _Time_ bình
**David Hilbert** (23 tháng 1 năm 1862, Wehlau, Đông Phổ – 14 tháng 2 năm 1943, Göttingen, Đức) là một nhà toán học người Đức, được công nhận như là một trong những nhà toán
Một tập hợp hình đa giác trong một [[biểu đồ Euler]] Tập hợp các số thực (R), bao gồm các số hữu tỷ (Q), các số nguyên (Z), các số tự nhiên (N). Các số
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
**Logic** (hợp lý, hữu lý, hàm lý) hay **luận lý học**, từ tiếng Hy Lạp cổ đại λόγος (logos), nghĩa nguyên thủy là _từ ngữ_, hoặc _điều đã được nói_, (nhưng trong nhiều ngôn ngữ
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và
Trong truyền thông liên lạc, một **mã hiệu** - hay còn gọi là **mã số** hoặc chỉ đơn thuần là **mã** - là một công thức để biến đổi một mẩu thông tin (chẳng hạn,
**Khoa học máy tính lý thuyết** () là một tập hợp con của khoa học máy tính và toán học tập trung vào nhiều chủ đề toán học hơn của điện toán và bao gồm
phải|nhỏ|325x325px|Một minh hoạ của tranh luận đường chéo của Cantor (ở cơ sở 2) cho sự tồn tại của [[Tập hợp không đếm được|các tập hợp không đếm được. Chuỗi ở phía dưới không thể
là một nhà phê bình văn hóa người Nhật. Ông là giáo sư của trường Đại học Quốc tế Nhật Bản và Viện Công nghệ Tokyo. ## Tiểu sử Sinh ra và lớn lên ở
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
Trong lý thuyết tập hợp và các ứng dụng của nó quanh toán học, **lớp** là họ của các tập (và đôi khi trên cả các đối tượng toán học khác) và được định nghĩa
**Lý thuyết tính toán**, còn được gọi là **lý thuyết đệ quy**, là một nhánh của logic toán học, của khoa học máy tính và của lý thuyết tính toán (theory of computation) bắt nguồn
phải|nhỏ|[[Lưu đồ thuật toán (thuật toán Euclid) để tính ước số chung lớn nhất (ưcln) của hai số _a_ và _b_ ở các vị trí có tên A và B. Thuật toán tiến hành bằng
**Lý thuyết thông tin thuật toán** là một lĩnh vực của lý thuyết thông tin và khoa học máy tính liên quan đến mối quan hệ giữa tính toán và thông tin. Theo Gregory Chaitin,
Trong khoa học máy tính, **thuật toán dòng dữ liệu** là thuật toán để xử lý các dòng dữ liệu trong đó dữ liệu vào được cung cấp dưới dạng một dãy các phần tử,
**John von Neumann** (**Neumann János**; 28 tháng 12 năm 1903 – 8 tháng 2 năm 1957) là một nhà toán học người Mỹ gốc Hungary và là một nhà bác học thông thạo nhiều lĩnh
nhỏ|[[Giuseppe Peano]] Trong logic toán học, các **tiên đề Peano**, còn được gọi là các **tiên đề Peano –** **Dedekind** hay các **định đề Peano**, là các tiên đề cho các số tự nhiên được
**Lý trí** là khả năng của ý thức để hiểu các sự việc, sử dụng logic, kiểm định và khám phá những sự kiện; thay đổi và kiểm định hành động, kinh nghiệm và niềm
thumb|Hình minh họa tiên đề chọn, với mỗi và lần lượt biểu diễn một bình và một viên bi thumb| là một [[họ chỉ số vô hạn các tập hợp với tập chỉ số là
**Alan Mathison Turing** OBE FRS (23 tháng 6 năm 1912 – 7 tháng 6 năm 1954) là một nhà toán học, logic học và mật mã học người Anh, được xem là một trong những
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
**Georg Ferdinand Ludwig Philipp Cantor** (;  – 6 tháng 1 năm 1918) là một nhà toán học người Đức, được biết đến nhiều nhất với tư cách cha đẻ của lý thuyết tập hợp, một
**Trí tuệ nhân tạo** (**TTNT**) (tiếng Anh: **_Artificial intelligence_**, viết tắt: **_AI_**) là khả năng của các hệ thống máy tính thực hiện các nhiệm vụ liên quan đến trí thông minh của con người,
Khoa học máy tính nghiên cứu các cơ sở lý thuyết của thông tin và tính toán, cùng với các kỹ thuật thực tiễn để thực hiện và
**Anatoliy Oleksandrovych Vasserman** (, , sinh ngày 9 tháng 12 năm 1952 tại Odessa) là một nhà báo, nhà bình luận chính trị và blogger người Ukraina. Ông là một trong những người dẫn chương
Đây là bài con của **Trí tuệ nhân tạo**, nội dung chú trọng vào sự phát triển và **lịch sử ngành trí tuệ nhân tạo**. ## Sự phát triển của lý thuyết trí tuệ nhân
[[Phần cứng|Phần cứng máy tính là nền tảng cho xử lý thông tin (sơ đồ khối). ]] **Lịch sử phần cứng máy tính** bao quát lịch sử của phần cứng máy tính, kiến trúc của
Trong logic, một **luận cứ** là một cố gắng để thể hiện tính đúng đắn của một khẳng định được gọi là một _kết luận_, dựa trên tính đúng đắn của một tập các khẳng
Trong lý thuyết độ phức tạp tính toán, **NL** (viết tắt tiếng Anh - Nondeterministic Logarithmic-space) là lớp độ phức tạp bao gồm các bài toán quyết định có thể giải bằng máy Turing không
**Phòng thí nghiệm khoa học máy tính và trí tuệ nhân tạo MIT (CSAIL) **là một phòng thí nghiệm nghiên cứu tại viện công nghệ Massachusetts thành lập bởi sự sáp nhập vào năm 2003
Ngày **14 tháng 1** là ngày thứ 14 trong lịch Gregory. Còn 351 ngày trong năm (352 ngày trong năm nhuận). ## Sự kiện *927 – Sau khi thủ đô Phúc Châu bị chiếm, Quốc