Số nguyên tố Ramanujan là tên gọi các số nguyên tố thỏa mãn một kết quả do nhà toán học Ấn Độ Srinivasa Ramanujan tìm ra.
Nguồn gốc và định nghĩa
Năm 1919, Ramanujan công bố một cách chứng minh định đề Bertrand. Về khúc cuối bài nghiên cứu này (chỉ hai trang), Ramanujan rút ra thêm một kết luận nữa, là:
: lần lượt tương ứng với
trong đó hàm (x) là số các số nguyên tố ≤ x.
Kết quả này, khi đọc ngược lại, trở thành định nghĩa của số nguyên tố Ramanujan, và các số 2, 11, 17, 29, 41 là những con số đầu trong các số nguyên tố Ramanujan. Nói cách khác:
:Số nguyên tố Ramanujan là các số Rn sao cho Rn là số nhỏ nhất thỏa mãn điều kiện
: ≥ n, cho mọi x ≥ Rn
Hay nói cách khác nữa:
:Số nguyên tố Ramanujan là các số nguyên Rn sao cho Rn là số nhỏ nhất có thể bảo đảm có n số nguyên tố giữa x và x/2 cho mọi x ≥ Rn
Vì Rn là số nguyên nhỏ nhất thỏa mãn điều kiện trên, nên Rn phải là số nguyên tố: Mỗi khi hàm tăng lên 1, đó là do có thêm một số nguyên tố nữa.
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Số nguyên tố Ramanujan** là tên gọi các số nguyên tố thỏa mãn một kết quả do nhà toán học Ấn Độ Srinivasa Ramanujan tìm ra. ## Nguồn gốc và định nghĩa Năm 1919, Ramanujan
nhỏ|Mô phỏng bằng với các que Cuisenaire, các tính chất của các số gần như nguyên tố bậc 2 của số 6 Trong lý thuyết số, một số tự nhiên được gọi là **số gần
**Định đề Bertrand** là một định lý phát biểu rằng với bất kỳ số nguyên , luôn tồn tại ít nhất một số nguyên tố sao cho :
**Srīnivāsa Rāmānujan Iyengar** (; tên khai sinh là **Srinivasa Ramanujan Aiyangar**, ; 22 tháng 12 năm 1887 – 26 tháng 4 năm 1920) là nhà toán học người Ấn Độ, nổi tiếng là người dù
nhỏ|Sáu số tam giác đầu tiên Số tam giác là số tự nhiên có giá trị bằng tổng các số điểm chấm xuất hiện trong một tam giác đều được sắp xếp bởi các điểm
Trong toán học và lĩnh vực lý thuyết số, **hằng số Landau–Ramanujan** là con số xuất hiện trong định lý phát biểu rằng với số _x_ lớn, số số nguyên dương nhỏ hơn _x_ và
**1729** là số tự nhiên liền sau 1728 và liền trước 1730. Nó còn được biết là **số Hardy-Ramanujan**, sau câu chuyện của nhà toán học Anh G. H. Hardy khi ông thăm nhà toán
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
Trong toán học và khoa học máy tính, hàm **floor** (**phần nguyên nhỏ hơn**) và **ceiling** (**phần nguyên lớn hơn**) là các quy tắc cho tương ứng một số thực vào một số nguyên gần
Trong lý thuyết số, **hàm** **số học**, hoặc **hàm số lý thuyết số** đối với hầu hết các tác giả nói đến bất kỳ hàm _f_ (_n_) nào có miền là số nguyên dương và
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
Trong lý thuyết số, **tích Euler** là dạng khai triển chuỗi Dirichlet thành tích vô hạn được đánh chỉ số bởi các số nguyên tố. Tích gốc xuất hiện trong bài chứng minh công thức
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
thumb|220x124px | right | Đồ thị hàm gamma và các cách diễn tả mở rộng khác của giai thừa Trong toán học, **giai thừa** là một toán tử một ngôi trên
**Terence "Terry" Tao** (tiếng Trung: 陶哲轩; sinh ngày 17 tháng 7 năm 1975) là nhà toán học mang quốc tịch Úc - Mỹ gốc Trung Quốc chuyên về giải tích điều hòa, phương trình đạo
**Godfrey Harold Hardy** (G. H. Hardy) (1877-1947) là nhà toán học người Anh, được biết đến với những thành tựu của mình trong lý thuyết số và giải tích toán học. Trong sinh học, ông
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
**John Edensor Littlewood** (9 tháng 6 năm 1885 – 6 tháng 9 năm 1977) là một nhà toán học người Anh. Ông nghiên cứu chủ yếu về giải tích, lý thuyết số và phương trình
:_Ngoài lý thuyết số, cụm từ **hàm nhân tính** thường được dùng để chỉ hàm nhân tính hoàn toàn. Bài viết này nói về hàm nhân tính trong ngữ cảnh lý thuyết số._ Trong lý
Trong lý thuyết số, **bài toán Waring** hỏi rằng có phải mỗi số tự nhiên _k_ đều có một số nguyên dương _s_ sao cho mỗi số tự nhiên đều có thể viết thành tổng
Trong toán học, một **biểu thức** hay **biểu thức toán học** là một tổ hợp hữu hạn các ký hiệu được tạo thành sao cho đúng dạng theo các quy tắc phụ thuộc vào ngữ
**Pál Turán** (; 18 tháng 8 năm 1910 – 26 tháng 9 năm 1976) còn được biết là Paul Turán, là một nhà toán học Hungary làm việc với lý thuyết số. Ông từng cộng
Trong lý thuyết xác suất và thống kê, **Phân phối Poisson** (Tiếng Anh: _Poisson distribution_) là một phân phối xác suất rời rạc cho biết xác suất xảy ra một số lượng sự kiện trong
thumb|Một hình elip (đỏ) bao quanh mặt cắt của một [[hình nón với một mặt phẳng nghiêng]] thumb|Các thành phần của hình elip thumb|Các hình elip với tâm sai tăng dần Trong toán học, một
nhỏ|[[Peterhouse , trường cao đẳng đầu tiên của Cambridge, được thành lập vào năm 1284]] **Viện Đại học Cambridge** (tiếng Anh: _University of Cambridge_), còn gọi là **Đại học Cambridge**, là một viện đại học
thế=Augustus De Morgan|nhỏ **Augustus De Morgan** (27 tháng 6 năm 1806 - 18 tháng 3 năm 1871) là một nhà toán học và logic học người Anh. Ông đã xây dựng các luật De Morgan
Ngày **22 tháng 12** là ngày thứ 356 (357 trong năm nhuận) trong lịch Gregory. Còn 9 ngày trong năm. Trong tiết khí, ngày này hoặc ngày 21 tháng 12 là ngày đông chí. ##
430x430px|thumb ## Sự kiện ### Tháng 1 * 10 tháng 1: Thành lập liên minh quốc tế. ### Tháng 2 * 2 tháng 2: Estonia tuyên bố độc lập ### Tháng 4 * 24 tháng