✨Đường tròn Euler

Đường tròn Euler

nhỏ|Đường tròn chín điểm.

Trong hình học, đường tròn chín điểm (tiếng Anh: nine-point circle) là một đường tròn có thể được dựng với mọi tam giác cho trước. Đường tròn này đi qua chín điểm - đúng như cái tên của nó - chín điểm đặc biệt trong tam giác, bao gồm:

  • Trung điểm mỗi cạnh tam giác
  • Chân đường cao kẻ từ mỗi đỉnh.
  • Trung điểm của đoạn thẳng nối từ đỉnh tới trực tâm (nơi mà ba đường cao đồng quy).

Đường tròn chín điểm cũng được biết tới với những cái tên như đường tròn của Feuerbach (dựa trên nhà toán học Karl Wilhelm Feuerbach, đường tròn của Euler (dựa trên nhà toán học Leonhard Euler), đường tròn của Terquem (dựa trên nhà toán học Olry Terquem), đường tròn sáu điểm, đường tròn mười hai điểm, đường tròn n-điểm hay đường tròn trung bình. Tâm của nó được gọi là tâm chín điểm của tam giác.

Chín điểm quan trọng

thế=|trái|không_khung|300x300px

Hình bên phải cho ta thấy chín điểm quan trọng của đường tròn Euler. Các điểm D, E và F là trung điểm của ba cạnh của tam giác. Điểm G, H và I là chân của ba đường cao của tam giác. Các điểm J, K và L là trung điểm của ba đoạn thẳng nối ba đỉnh (các điểm A, B và C) và trực tâm (điểm S) của tam giác.

Đối với tam giác nhọn, sáu trên chín điểm (trung điểm của các cạnh và chân của đường cao) nằm trên chính tam giác đó. Đối với tam giác tù, hai đường cao có chân nằm ngoài tam giác nhưng hai chân đó vẫn nằm trên đường tròn Euler.

Phát hiện

Mặc dù được ghi công bằng cách gọi tên đường tròn, Karl Wilhelm Feuerbach bản thân không chứng minh được hoàn toàn đường tròn chín điểm mà chỉ có sáu điểm, nhận ra trung điểm của ba cạnh tam giác và chân đường cao (Xem Hình vẽ 1., với sáu điểm D, E, F, G, H, I.) cùng nằm trên một đường tròn.(Sớm hơn một chút, Charles Brianchon và Jean-Victor Poncelet cũng đã chứng minh được điều tương tự.) Nhưng không lâu sau khi Feuerbach làm được điều này, nhà toán học Olry Terquem đã tự mình chứng minh được đường tròn chín điểm như ngày nay, khi là người đầu tiên nhận ra trung điểm của đoạn thẳng nối đỉnh với trực tâm cũng nằm trên đường tròn này (Xem Hình vẽ 1., với ba điểm J, K, L.). Nhờ đó, Terquem cũng trở thành người đầu tiên sử dụng tên gọi đường tròn chín điểm như ngày nay.

Đường tròn tiếp xúc

right|thumb|Đường tròn chín điểm tiếp xúc với đường tròn nội tiếp và đường tròn bàng tiếp.

Năm 1822, Karl Feuerbach đã chứng minh rằng đường tròn chín điểm của tam giác tiếp xúc với ba đường tròn bàng tiếp, đồng thời với đường tròn nội tiếp của tam giác đó. Kết quả này được gọi tên là định lý Feuerbach, mà ở đó ông phát biểu rằng:

Đường tròn đi qua các chân đường cao của một tam giác tiếp xúc với cả bốn đường tròn lần lượt tiếp xúc với các cạnh của tam giác.
Điểm mà đường tròn chín điểm tiếp xúc với đường tròn nội tiếp được gọi là điểm Feuerbach.

Tính chất

thumb|righ|Một số tính chất

  • Gọi R là bán kính đường tròn ngoại tiếp của tam giác thì đường tròn Euler có bán kính là R/2 và tâm của nó là trung điểm đoạn nối trực tâm và tâm đường tròn ngoại tiếp của tam giác đó.
  • Nếu có một hệ thống trực giao của 4 điểm đã cho thì các tam giác có đỉnh là 3 trong 4 điểm đó đều có chung đường tròn Euler.
  • Các tâm đường tròn nội tiếp và các đường tròn bàng tiếp lập thành một hệ thống trực giao có đường tròn Euler chính là đường tròn ngoại tiếp tam giác gốc.
  • Với có bốn điểm phân biệt bất kỳ A,B,C,D thì các đường tròn Euler của các tam giác ABC, BCD, CDA, DAB đồng quy tại một điểm.

Định lý liên quan

thumb|righ|Định lý Feuerbach

  • Định lý Feuerbach về đường tròn chín điểm và các đường tròn nội tiếp bàng tiếp: Đường tròn Euler của một tam giác tiếp xúc với đường tròn nội tiếp và ba đường tròn bàng tiếp của tam giác đó.
  • Định lý Feuerbach về đường hyperbol chữ nhật trong tam giác: Tâm của tất cả mọi đường hyperbol chữ nhật đều nằm trên đường tròn Euler.

thumb|right|Định lý Bliss

  • Định lý Bliss: Cho ba đường thẳng song song đi qua ba trung điểm của ba cạnh của tam giác khi đó đối xứng của ba cạnh tam giác đó qua ba đường thẳng này một cách lần lượt sẽ đồng quy tại đường tròn chín điểm của tam giác đó.
  • Định lý Thebault: Cho tam giác ABC với các đường cao AA', BB', CC'. Các đường thẳng Euler của các tam giác AB'C', A'BC', A'B'C sẽ đồng quy trên đường tròn Euler của tam giác ABC tại một điểm P thoả mãn moả một trong các khoảng cách PA', PB', PC' bằng tổng 2 khoảng cách còn lại.

Hệ thức

Thêm

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
nhỏ|Đường tròn chín điểm. Trong hình học, **đường tròn chín điểm** (tiếng Anh: _nine-point circle_) là một đường tròn có thể được dựng với mọi tam giác cho trước. Đường tròn này đi qua chín
[[Hình:Triangle.EulerLine.svg|thumb| ]] Trong hình học, **đường thẳng Euler** (tiếng Anh: _Euler line)_, được đặt tên theo nhà toán học Leonhard Euler là một đường thẳng được xác định từ bất kỳ tam giác nào không
**Leonhard Euler** ( , ; 15 tháng 4 năm 170718 tháng 9 năm 1783) là một nhà toán học, nhà vật lý học, nhà thiên văn học, nhà lý luận và kỹ sư người Thụy
thumb|right|upright=1.25|d=|IO| =\sqrt{R (R-2r)} Trong hình học, **định lý Euler** nói về khoảng cách _d_ giữa tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp của một tam giác thể hiện qua công thức
Trong toán học, **Đồng nhất thức Euler** hoặc **đẳng thức Euler** là đẳng thức : e^{i \pi} + 1 = 0 trong đó : là số Euler, cơ số của logarit tự nhiên, : là
thumb|right|[[Đường cong Tschirnhausen là một ví dụ về đường cong đại số bậc ba.]] Trong toán học, **đường cong phẳng đại số affin** là tập nghiệm của đa thức hai biến. **đường cong phẳng đại
thumb|Đường cong Neuberg **Đường cong bậc ba Neuberg** là đường đường cong bậc ba đặc biệt trong lĩnh vực hình học tam giác, đường cong Neuberg đặt theo tên Joseph Jean Baptiste Neuberg, một nhà
right|thumb|Một số đường cong bậc 3. Nhấn vào ảnh để xem rõ hơn Trong toán học, **đường cong bậc 3** là đường cong đại số định nghĩa bởi hàm số bậc ba : áp dụng
thumb|Minh họa phương pháp Euler. Đường cong chưa biết có màu xanh da trời và lời giải gần đúng của nó là đường nhiều cạnh màu đỏ. Trong toán học và khoa học máy tính,
Trong toán học, và đặc biệt hơn trong tôpô đại số và tổ hợp đa diện, **đặc trưng Euler** (hoặc **đặc trưng Euler-Poincaré**) là một topo bất biến, một số mà nó mô tả hình
Trong hình học, **đường thẳng trung tâm** là những đường thẳng có tính chất đặc biệt của một tam giác trong một mặt phẳng. Các tính chất đặc biệt mà phân biệt một đường thẳng
thumb|Định lý Lester Trong hình học Euclid, **định lý Lester** đặt theo tên của giáo sư nữ June Lester, người Canada, định lý này phát biểu rằng: Trong một tam giác không phải là tam
phải|nhỏ|202x202px| Hình tròn có [[Chu vi hình tròn|chu vi (C) màu đen, đường kính (D) màu lam, bán kính (R) màu đỏ và tâm (O) màu lục. ]] Trong hình học, một **hình tròn** là
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
nhỏ|Hình 1: Biên của tam giác Reuleaux có độ rộng không đổi được hình thành bằng đường cong dựa trên một tam giác đều. Tất cả các điểm trên cung tròn cách đều với đỉnh
thumb|right|Định lý Thebault I **Định lý Thébault** là một trong bốn định lý hình học phẳng được đề xuất bởi nhà toán học người Pháp Victor Thébault (1882–1960) đăng trên tạp chí toán học hàng
Trong hình học, **điểm** là một khái niệm nguyên thủy, không định nghĩa, là cơ sở để xây dựng các khái niệm hình học khác. ## Sơ lược về điểm Điểm được hiểu như là
thumb|Jerabek hyperbola Đường **hyperbol Jerabek** (tiếng Anh: **Jerabek Hyperbola**) là một đường hyperbol chữ nhật đặc biệt trong tam giác. Đường hyperbol Jerabek đi qua các điểm được đánh tên sau trong bách khoa toàn
right|thumb|Vecten points Trong hình học, đặc biệt là với các tam giác, **điểm Vecten** (tiếng Anh: _Vecten points_) là hai điểm đặc biệt với tam giác bất kì. ## Điểm Vecten ngoài cho ABC là
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
[[Đồ thị hàm sin]] [[Đồ thị hàm cos]] [[Đồ thị hàm tan]] [[Đồ thị hàm cot]] [[Đồ thị hàm sec]] [[Đồ thị hàm csc]] Trong toán học nói chung và lượng giác học nói riêng,
thumb|right| Mặt yên ngựa (mặt hyperbolic paraboloid). thumb|right|Chai Klein trong không gian 3 chiều. Trong toán học, cụ thể là trong topo, một **mặt** là một đa tạp topo 2 chiều. Ví dụ quen thuộc
nhỏ|254x254px|Đồ thị của hàm số . là số duy nhất lớn hơn 1 sao cho diện tích phần được tô màu bằng 1. Số **** là một hằng số toán học có giá trị gần
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
nhỏ|Dưới con mắt tôpô học, cái cốc và cái vòng là một **Tô pô** hay **tô pô học** có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm _topos_ (nghĩa là
**Hệ quy chiếu quay** là một hệ quy chiếu phi quán tính quay so với một hệ quy chiếu quán tính. Ví dụ về hệ quy chiếu quay có thể thấy được hằng ngày là
**Pascal** là một ngôn ngữ lập trình cho máy tính thuộc dạng mệnh lệnh và thủ tục, được Niklaus Wirth phát triển vào năm 1970. Pascal là ngôn ngữ lập trình đặc biệt thích hợp
Công thức Viète được in trong tác phẩm _Variorum de rebus mathematicis responsorum, liber VIII_ xuất bản năm 1593 của [[François Viète]] Trong toán học, **công thức Viète** là một công thức tích vô hạn
phải|Một tia đi qua gốc của hyperbol \scriptstyle x^2\ -\ y^2\ =\ 1 cắt hyperbol tại điểm \scriptstyle (\cosh\,a,\,\sinh\,a), với \scriptstyle a là 2 lần diện tích của hình giới hạn bởi tia và trục
Trong toán học, **lượng giác** (tiếng Anh: _trigonometry_, lấy nguyên gốc từ tiếng Hy Lạp cổ đại của hai từ τρίγωνον nghĩa là "tam giác" và μέτρον nghĩa là "đo lường") là một phân nhánh
nhỏ|Không gian mà chú cua [[còng này (có một càng to hơn bên kia nên là một hình không đối xứng) sinh sống là một mặt Mobius. Lưu ý rằng chú cua biến thành hình
thumb|right|Ví dụ về tứ giác nội tiếp. Trong hình học phẳng, một **tứ giác nội tiếp** là một tứ giác mà cả bốn đỉnh đều nằm trên một đường tròn. Đường tròn này được gọi
Trên [[cung (hình học)|cung tròn bất kỳ có bán kính R, có cung bằng độ dài bán kính được gọi là cung có số đo 1 radian hay cung 1 radian. Góc ở tâm chắn
**Cơ học cổ điển** là một phần của cơ học, một lĩnh vực của vật lý học. Các vấn đề cơ bản của nó có từ thời Hy Lạp cổ đại, nó phát triển rực
Các điểm trong hệ tọa độ cực với gốc cực _O_ và trục cực _L_. Điểm màu xanh lá có bán kính là 3 và góc phương vị là 60°, tọa độ là (3, 60°).
Trong toán học, **hàm mũ** là hàm số có dạng **y = ax**, với cơ số a là số dương khác 1. ## Tính chất nhỏ|Đồ thị của các hàm số: y = 10x, y
nhỏ|Chiếc bánh pizza được cắt nhỏ; mỗi miếng bánh là \frac1{8} chiếc bánh. **Phân số đơn vị** là phân số dương có tử số bằng 1, tức có dạng \frac1{n} với n
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
Trong toán học, **nhóm cơ bản** là một trong những khái niệm cơ bản của tô pô đại số. Mỗi một điểm trong không gian tô pô, có một nhóm cơ bản liên kết với
nhỏ|phải|Chai Klein nhỏ|phải|[[Felix Klein (1849 - 1925)]] Trong toán học, **chai Klein** (hay **bình Klein**) là một ví dụ cho **mặt không định hướng**, nói cách khác, đó là một bề mặt (một **đa tạp**
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
phải|nhỏ|250x250px|Ma trận biến đổi _A_ tác động bằng việc kéo dài vectơ _x_ mà không làm đổi phương của nó, vì thế _x_ là một vectơ riêng của _A_. Trong đại số tuyến tính, một
thumb|right|Theo chiều ngược chiều kim đồng hồ, độ lớn của vòng được biểu thị bằng các con số tương ứng. Trong số đo góc, một **vòng** (tiếng Anh: **turn**) là một đơn vị có độ
Trong toán học, **nhóm trực giao** với số chiều n, được ký hiệu là \operatorname{O}(n), là nhóm gồm các phép biến đổi bảo toàn khoảng cách trong một không gian Euclid n chiều bảo toàn
Trong vật lý và toán học, một **Hằng số** (hay gọi ngắn là **Hằng**) là đại lượng có giá trị không đổi. Hằng số thường được ký hiệu là _const_, viết tắt của chữ tiếng
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
phải|nhỏ|Hình tứ diện Trong hình học không gian, **tứ diện** (tiếng Anh: _Tetrahedrol_) hay **hình chóp tam giác** là một khối đa diện gồm có bốn mặt là các hình tam giác, 6 cạnh và
**Điểm Exeter** là một điểm đặc biệt hình học phẳng về tam giác. Điểm Exeter là một tâm tam giác được đánh số thứ tự trong bách khoa toàn thư về các tâm của tam
:Cho tam giác ABC với I tâm đường tròn nội tiếp bốn đường thẳng Euler của bốn tam giác BCI, CAI, ABIABC đồng quy. Điểm đồng quy này gọi là **điểm Schiffler** của