Kiểm tra Fermat là một thuật toán xác suất kiểm tra một số tự nhiên là hợp số hay là số nguyên tố.
Khái niệm
Định lý nhỏ Fermat phát biểu rằng nếu p là số nguyên tố và , thì
:.
Nếu ta muốn kiểm tra số n có là nguyên tố không, ta lấy ngẫu nhiên các số a' và kiểm tra xem đẳng thức trên có đúng không. Nếu nó không đúng với một giá trị a nào đó thì n là hợp số. Nếu đẳng thức đúng với nhiều giá trị của a, ta có thể nói rằng n là số nguyên tố với xác suất nào đó, hay là một số giả nguyên tố (pseudoprime).
Có thể phép thử sẽ cho ta một kết quả sai.
Số a mà
:
trong khi n là hợp số được gọi là một giả Fermat.
Còn nếu có số a mà
:
thì a được xem như một bằng chứng Fermat chứng tỏ n là hợp số.
Thuật toán và thời gian thi hành
Thuật toán có thể viết như sau:
:Inputs: n: giá trị để kiểm tra tính nguyên tố; k: tham số tham gia vào quá trình kiểm tra
:Output: hợp số nếu n là hợp số, nếu không nguyên tố xác suất
::repeat k times:
:::lấy a ngẫu nhiên trong [1, n − 1]
::if an − 1 mod n ≠ 1 then
:::return composite
::return probably prime
Khi dùng thuật toán tính nhanh luỹ thừa theo mođun, thời gian thi hành của thuật toán là O(k × log3n), ở đó k là số lần kiểm tra với mỗi số a ngãu nhiên, và n là giá trị ta muốn kiểm tra.
Khả năng vận dụng
Có khá nhiều giá trị của n là các số Carmichael mà với tất cả các giá trị của a sao cho ƯCLN(a,n)=1 là giả Fermat. Mặc dù các số Carmichael là rất hiếm, nhưng phép thử Fermat rất ít được dùng so với các phương pháp khác như kiểm tra Miller-Rabin hay kiểm tra Solovay-Strassen.
Nói chung, nếu n không là số Carmichael thì ít nhất một nửa các số
:
là bằng chứng Fermat. Để chứng minh điều này, giả sử a là một bằng chứng Fermat và a1, a2,..., as là giả Fermat. Khi đó
:
và do đó tất cả a × ai for i = 1, 2,..., s là bằng chứng Fermat.
👁️
0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Kiểm tra Fermat** là một thuật toán xác suất kiểm tra một số tự nhiên là hợp số hay là số nguyên tố. ## Khái niệm Định lý nhỏ Fermat phát biểu rằng nếu _p_
**Kiểm tra Miller-Rabin** là một thuật toán xác suất để kiểm tra tính nguyên tố cũng như các thuật toán kiểm tra tính nguyên tố: Kiểm tra Fermat và Kiểm tra Solovay-Strassen. Nó được đề
**Kiểm tra tính nguyên tố** (tiếng Anh: _primality test_) là bài toán kiểm tra xem một số tự nhiên có phải là số nguyên tố hay không. Bài toán này đặc biệt trở nên
**Định lý nhỏ của Fermat** (hay định lý Fermat nhỏ - phân biệt với định lý Fermat lớn) khẳng định rằng nếu là một số nguyên tố, thì với số nguyên bất kỳ,
**Số Fermat** là một khái niệm trong toán học, mang tên nhà toán học Pháp Pierre de Fermat, người đầu tiên đưa ra khái niệm này. Nó là một số nguyên dương có dạng :
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Trong lý thuyết số, **số Carmichael** là một hợp số thỏa mãn quan hệ đồng dư số học mô-đun : : cho tất cả các số nguyên nguyên tố cùng nhau
Trong lý thuyết số, số giả nguyên tố (tiếng Anh: _pseudoprime_) là một số nguyên tố xác suất (tiếng Anh: **probable prime **) nhưng không phải là số nguyên tố. Một số tự nhiên thoả
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
phải|nhỏ|389x389px|[[Định lý Pythagoras|Định lý Pitago có ít nhất 370 cách chứng minh đã biết ]] Trong toán học và logic, một **định lý** là một mệnh đề phi hiển nhiên đã được chứng minh là
Trong lý thuyết số, **số nguyên tố chính quy** là một loại đặc biệt của số nguyên tố, được định nghĩa bởi Ernst Kummer trong 1850 để chứng minh một số trường hợp của định
**Số nguyên tố an toàn** là một số nguyên tố có dạng với _p_ cũng là số nguyên tố. (Theo quy ước, số nguyên tố _p_ được gọi là số nguyên
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
**Số nguyên tố Mersenne** là một số nguyên tố có giá trị bằng 2n − 1. Ví dụ 31 là số nguyên tố Mersenne vì 31 = 25 − 1 (31 và 5 đều là
Bài viết này là **danh sách các thuật toán** cùng một mô tả ngắn cho mỗi thuật toán. ## Thuật toán tổ hợp ### Thuật toán tổ hợp tổng quát * Thuật toán Brent: tìm
**Định lý của Ribet** (hay **Phỏng đoán Epsilon - Phỏng đoán ε**, tiếng Anh: **Ribet's theorem**) là một phần của lý thuyết số. Nó đề cập tới đến các thuộc tính của các biểu diễn
thumb|Việc tìm tất cả các [[bộ ba số Pythagoras|tam giác vuông có cạnh nguyên tương đương với việc giải phương trình Diophantos .]] Trong toán học, **phương trình Diophantos** là phương trình đa thức, thường
thumb|[[Đồ thị nửa lôgarit của các nghiệm của phương trình cho số nguyên , , và , với . Dải màu xanh lá cây đánh dấu các giá trị được chứng
Trong toán học, **dãy Lucas** và là các dãy số nguyên đệ quy không đổi thỏa mãn hệ thức truy hồi :
Trong mật mã học, **RSA** là một thuật toán mật mã hóa khóa công khai. Đây là thuật toán đầu tiên phù hợp với việc tạo ra chữ ký điện tử đồng thời với việc
Danh sách các vấn đề mở trong toán học ## Danh sách các bài toán mở trong toán học nói chung Nhiều nha toán học và tổ chức đã xuất bản danh sách cái bài
nhỏ|phải|Biểu trưng GIMPS 2020 **Great Internet Mersenne Prime Search** (**GIMPS**) (tạm dịch: _Tìm kiếm số nguyên tố Mersenne khổng lồ trên Internet_) là dự án hợp tác của các tình nguyện viên sử dụng phần
**1729** là số tự nhiên liền sau 1728 và liền trước 1730. Nó còn được biết là **số Hardy-Ramanujan**, sau câu chuyện của nhà toán học Anh G. H. Hardy khi ông thăm nhà toán
Trong điện toán, phép toán **modulo** là phép toán tìm số dư của phép chia 2 số (đôi khi được gọi là _modulus_). Cho hai số dư, (số bị chia) và (số chia) , modulo
Trong lý thuyết số, số nguyên tố được gọi là **số nguyên tố Sophie Germain** nếu cũng là số nguyên tố. Số của số nguyên tố
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
nhỏ|phải|[[Định lý Pytago|Định lý Pythagoras: _a_2 + _b_2 = _c_2]] Một **bộ ba số Pythagoras** (còn gọi là **bộ ba số Pytago** hay **bộ ba số Pythagore**) gồm ba số nguyên dương a, b, và c, sao cho a2
Trong lý thuyết nhóm, **định lý Lagrange** phát biểu rằng: nếu _H_ là nhóm con của nhóm hữu hạn _G_, thì cấp (số phần tử) của _G_ chia hết cho cấp của _H_. Định lý
nhỏ|[[Edmund Landau, nhà toán học Đức]] Tại hội nghị toán học quốc tế năm 1912, Edmund Landau đã liệt kê ra bốn bài toán về số nguyên tố. Các bài toán được nói theo lời
**Johann Carl Friedrich Gauß** (; ; ; 30 tháng 4 năm 1777 – 23 tháng 2 năm 1855) là một nhà toán học và nhà khoa học người Đức tài năng, người đã có nhiều
nhỏ|Các bảng số học dành cho trẻ em, Lausanne, 1835 **Số học** là phân nhánh toán học lâu đời nhất và sơ cấp nhất, được hầu hết mọi người thường xuyên sử dụng từ những
**Kỹ thuật tạo lệnh** hoặc **kỹ thuật ra lệnh** (prompt engineering) là quá trình cấu trúc một **văn bản đầu vào** cho AI tạo sinh giải thích và diễn giải. Một **văn bản đầu vào**
**Ireland** (phiên âm: "Ai-len", tiếng Anh: ; ; Ulster-Scots: ) là một hòn đảo tại Bắc Đại Tây Dương. Đảo này tách biệt với Đảo Anh ở phía đông qua Eo biển Bắc, Biển Ireland
**Thomas Andrew "Tom" Lehrer** (9 tháng 4 năm 1928 - 26 tháng 7 năm 2025) là một nhạc sĩ-ca sĩ, nghệ sĩ piano, nhà trào phúng và nhà toán học, nửa sau sự nghiệp chuyển
nhỏ|250x250px|Xác suất của việc tung một số con số bằng cách sử dụng hai con xúc xắc. **Xác suất** (Tiếng Anh: _probability_) là một nhánh của toán học liên quan đến các mô tả bằng