Trong toán học, hàm mật độ xác suất (Tiếng Anh là Probability density function hay PDF) dùng để biểu diễn một phân bố xác suất theo tích phân. Hàm mật độ xác suất luôn có giá trị không âm và tích phân của nó từ −∞ tới +∞ có giá trị bằng 1. Nếu một phân bố xác suất có mật độ f(x), thì về mặt trực quan, khoảng vi phân (vô cùng bé) [x, x + dx] có xác suất bằng f(x) dx.
Một cách không chính thức, hàm mật độ xác suất có thể được coi là phiên bản được làm mịn của một biểu đồ tần số: nếu ai đó liên tiếp đo đạc bằng thực nghiệm các giá trị của một biến ngẫu nhiên liên tục và tạo một biểu đồ tần số mô tả tần suất tương đối của các miền biến thiên của kết quả, thì biểu đồ tần số đó sẽ trông giống với mật độ xác suất của biến ngẫu nhiên đó (giả sử rằng biến được lấy mẫu đủ thường xuyên và các miền biến thiên của kết quả là đủ nhỏ).
Một cách chính thức, một phân bố xác suất có mật độ f(x) nếu f(x) là một hàm không âm khả tích Lebesgue R → R sao cho xác suất của khoảng [a, b] được cho bởi công thức
:
với hai số bất kỳ a và b. Điều đó hàm ý tích phân toàn phần của f phải bằng 1. Ngược lại, một hàm không âm khả tích Lebesgue bất kỳ với giá trị tích phân toàn phần bằng 1 là một mật độ xác suất của một phân bố xác suất được định nghĩa thích hợp.
Giải thích đơn giản
Một hàm mật độ xác suất là một hàm bất kỳ f(x) mô tả mật độ xác suất theo biến đầu vào x theo cách dưới đây.
- f(x) lớn hơn hoặc bằng 0 với mọi giá trị của x
- Tổng diện dích bên dưới đồ thị là 1:
::
Khi đó xác suất thực sự của x có thể được tính bằng cách lấy tích phân của hàm f(x) theo khoảng tích phân của biến đầu vào x.
Ví dụ: biến x trong đoạn [4.3,7.8] sẽ có xác suất thực sự là
:
Biến ngẫu nhiên
Một biến ngẫu nhiên, x, tuân theo hàm mật độ xác suất f(x) có liên hệ với biến ngẫu nhiên đều (có hàm mật độ xác suất là hằng số) y trong khoảng [0,1] thông qua công thức:
:x == F-1(y)
Trong đó F(t) là hàm phân bố tích lũy ứng với f(x):
:
và F−1(t) là hàm ngược của F(t).
👁️
0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong toán học, **hàm mật độ xác suất** (Tiếng Anh là _Probability density function_ hay PDF) dùng để biểu diễn một phân bố xác suất theo tích phân. Hàm mật độ xác suất luôn có
nhỏ|250x250px|Xác suất của việc tung một số con số bằng cách sử dụng hai con xúc xắc. **Xác suất** (Tiếng Anh: _probability_) là một nhánh của toán học liên quan đến các mô tả bằng
Trong toán học và thống kê, một **phân phối xác suất** hay thường gọi hơn là một **hàm phân phối xác suất** là quy luật cho biết cách gán mỗi xác suất cho mỗi khoảng
phải|nhỏ|280x280px|Hàm đặc trưng của một biến ngẫu nhiên với phân phối đều _U_(–1,1). Hàm này là giá trị thực bởi vì nó tương ứng với một biến ngẫu nhiên đối xứng qua gốc; tuy nhiên
[[Tập tin:Hydrogen eigenstate n5 l2 m1.png|thumb| Hàm sóng cho một hạt electron trên obitan nguyên tử 5d của nguyên tử hiđrô. Những phần tô màu chỉ ra vị trí nơi mật độ xác suất của
Trong lý thuyết xác suất và thống kê, **hàm sinh mô men** (**moment-generating function** hay **MGF**) của một biến ngẫu nhiên là một mô tả thay thế cho hàm phân phối xác suất của nó.
phải|nhỏ|Đồ thị của hàm khối xác suất. Mọi giá trị của hàm phải không âm và có tổng bằng 1. Trong lý thuyết xác suất, **hàm khối xác suất** (_probability mass function_, viết tắt PMF)
Trong lý thuyết xác suất, **hàm phân phối tích lũy** (Tiếng Anh: _Cumulative distribution function_ hay viết tắt _CDF_) mô tả đầy đủ phân phối xác suất của một biến ngẫu nhiên giá trị thực
**Xác suất hậu nghiệm** (tiếng Anh: _posterior probability_) của một biến cố ngẫu nhiên hoặc một mệnh đề không chắc chắn là xác suất có điều kiện mà nó nhận được khi một bằng chứng
**Lý thuyết xác suất** là ngành toán học chuyên nghiên cứu xác suất. Các nhà toán học coi xác suất là các số trong khoảng , được gán tương ứng với một _biến cố_ mà
Cấu trúc của một ống đo bourdon, các yếu tố xây dựng được làm bằng đồng thau [[brass]] Nhiều kỹ thuật đã được phát triển cho các phép đo áp suất và chân không. Dụng
nhỏ|phải|Hàm rect. **Hàm chữ nhật** hay **hàm rect** là một hàm toán học liên tục được định nghĩa như sau: :
\; \exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2} \right) \!| cdf =| mean =| median =| mode =| variance =| skewness = 0| kurtosis = | entropy =| mgf =| char =| **Phân phối
Trong toán học và thống kê, **biến ngẫu nhiên** (Tiếng Anh: _random variable_) là một ánh xạ toán học với đặc điểm là nó gán một giá trị cho kết quả đầu ra của một
Trong Lý thuyết xác suất và thống kê, **phân phối mũ** là một lớp của các phân bố xác suất liên tục. Chúng thường được dùng để mô hình thời gian giữa các biến cố
nhỏ|Định lý Bayes được viết lên bằng đèn neon xanh tại văn phòng của Autonomy ở Cambridge. **Định lý Bayes** (Tiếng Anh: _Bayes theorem_) là một kết quả của lý thuyết xác suất. Nó phản
:_Phân biệt với phương trình sóng_ Trong chuyển động sóng nói chung, các **hàm sóng** là các hàm số của thời gian và không gian thể hiện các đặc trưng của sóng, như li độ,
nhỏ|[[Biểu đồ Venn cho thấy hợp của _A_ và _B_]] Trong tổ hợp, một nhánh của toán học, **nguyên lý bao hàm-loại trừ** (hay **nguyên lý bao hàm và loại trừ** hoặc **nguyên lý bù
Trong lý thuyết xác suất và thống kê, **giá trị kỳ vọng** (Tiếng Anh: _expected value_), **giá trị mong đợi** (hoặc **kỳ vọng toán học**) của một biến ngẫu nhiên là trung bình có trọng
**Độc lập thống kê** của các biến xác suất hay biến cố chỉ việc giữa các biến không có quan hệ thống kê gì với nhau. Trong lý thuyết xác suất, nói rằng hai biến
| cdf =| mean =| median =| mode =| variance = (ma trận hiệp phương sai)| skewness =0| kurtosis =0| entropy =| mgf =
Trong lý thuyết xác suất và thống kê, **khoảng cách Hellinger ** là một đại lượng đo sự khác biệt giữa hai phân bố xác suất. Nó là một _f_-khoảng cách. Khoảng cách Hellinger được
{t(b-a)} \,\!| char = **Phân phối đều liên tục** là một phân phối mà xác suất xảy ra như nhau cho mọi kết cục của biến ngẫu nhiên liên tục. Phân phối đều liên
Hàm tán xạ Henyey-Greenstein cho một số giá trị của hệ số bất đối xứng Trong tán xạ, **hàm tán xạ Henyey-Greenstein**, được Henyey và Greenstein giới thiệu lần đầu vào năm 1941, cho phép
## Tác động Nhiều quá trình vật lý liên quan đến nhiệt độ, chẳng hạn như: * Các tính chất vật lý của vật chất bao gồm pha (rắn, lỏng, khí hoặc plasma), tỷ trọng,
right|thumb|upright=1.35|alt=Graph showing a logarithmic curve, crossing the _x_-axis at _x_= 1 and approaching minus infinity along the _y_-axis.|[[Đồ thị của hàm số|Đồ thị của hàm logarit cơ số 2 cắt trục hoành tại và đi
Trong học máy, một bộ **phân loại xác suất** là một bộ phân loại có khả năng dự đoán, dựa trên việc quan sát một đầu vào, một **phân phối xác suất** trên tập hợp
thế=|nhỏ|Về cơ bản, một độ đo có tính chấn của một [[hàm số đơn điệu|hàm đơn điệu theo nghĩa, nếu là tập con của khi này độ đo của nhỏ hơn hoặc
Các tình huống thường phát sinh trong đó một quyết định phải được đưa ra khi kết quả của mỗi lựa chọn có thể không chắc chắn. **Phân vân** hay **Sự không chắc chắn** đề
**Định luật Born** là một định luật của cơ học lượng tử cho biết xác suất mà một phép đo trong hệ lượng tử sẽ cho ra một kết quả cho trước. Định luật được
phải|nhỏ|Mật độ quang phổ của ánh sáng huỳnh quang là một hàm của bước sóng quang học cho thấy các cực đại tại các chuyển tiếp nguyên tử, được biểu thị bằng các mũi tên
**Vật lý thống kê** là một ngành trong vật lý học, áp dụng các phương pháp thống kê để giải quyết các bài toán liên quan đến các hệ chứa một số rất lớn những
**Max Born** (11 tháng 12 năm 1882 – 5 tháng 1 năm 1970) là một nhà vật lý và một nhà toán học người Đức. Ông được trao thẳng giải Nobel Vật lý vào năm
Trong vật lý lý thuyết, **sơ đồ Feynman** (hay **biểu đồ Feynman**, **lược đồ Feynman**, **giản đồ Feynman**) là phương pháp biểu diễn bằng hình ảnh các công thức toán học miêu tả hành xử
thumb|upright=1.3|Các [[hàm sóng của electron trong một nguyên tử hydro tại các mức năng lượng khác nhau. Cơ học lượng tử không dự đoán chính xác vị trí của một hạt trong không gian, nó
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
Đây là **danh sách các nhà toán học người Do Thái**, bao gồm các nhà toán học và các nhà thống kê học, những người đang hoặc đã từng là người Do Thái hoặc có
nhỏ|254x254px|Đồ thị của hàm số . là số duy nhất lớn hơn 1 sao cho diện tích phần được tô màu bằng 1. Số **** là một hằng số toán học có giá trị gần
nhỏ | phải | Mô phỏng một hàm mẫu của quá trình Wiener Trong toán học và lý thuyết xác suất, một **quá trình ngẫu nhiên** (Tiếng Anh: _stochastic process_, _random process_) là một họ
**Quản trị vận hành** là một lĩnh vực quản lý liên quan đến việc thiết kế và kiểm soát quá trình sản xuất và thiết kế lại hoạt động kinh doanh trong sản xuất hàng
right|thumb|Sơ đồ biểu diễn một quá trình Markov với hai trạng thái E và A. Mỗi số biểu diễn xác suất của quá trình Markov chuyển từ trạng thái này sang trạng thái khác theo
Trong lý thuyết xác suất và thống kê, **số trung vị** (tiếng Anh: _median_) là một số tách giữa nửa lớn hơn và nửa bé hơn của một mẫu, một quần thể, hay một phân
Trong vật lý hạt, **phương trình Dirac** là một phương trình sóng tương đối tính do nhà vật lý người Anh Paul Dirac nêu ra vào năm 1928 và sau này được coi
_Kẻ bạc gian_ (Le Tricheur), họa phẩm của [[Georges de La Tour, trưng bày tại bảo tàng Louvre, Paris]] **Ngụy biện con bạc**, hay **ngụy biện của tay cá cược**, **ngụy biện Monte Carlo** hoặc
**Học có giám sát** là một kĩ thuật của ngành học máy để xây dựng một hàm (_function_) từ dữ liệu huấn luyện. Dữ liệu huấn luyện bao gồm các cặp gồm đối tượng đầu
thumb|300 px|right|Với mọi hàm số liên tục trên và khả vi trên , tồn tại một điểm sao cho đường thẳng nối hai điểm và song song với tiếp
**Vận tốc âm thanh** hay **tốc độ âm thanh** là tốc độ của sự lan truyền sóng âm thanh trong một môi trường truyền âm (xét trong hệ quy chiếu mà môi trường truyền âm
Nguyên lý hoạt động của kính hiển vi quét chui hầm **Kính hiển vi quét xuyên hầm**, hay **kính hiển vi quét chui hầm** (tiếng Anh: _Scanning tunneling microscope_, viết tắt là **_STM_**) là một
**Entropy thông tin** là một khái niệm mở rộng của entropy trong nhiệt động lực học và cơ học thống kê sang cho lý thuyết thông tin. Entropy thông tin mô tả mức độ hỗn