Trong vật lý và giải tích toán học, định luật Gauss là một ứng dụng của định lý Gauss cho các trường véctơ tuân theo luật bình phương nghịch đảo với khoảng cách.
Ví dụ, với trường vectơ cường độ điện trường hay lực hấp dẫn, định luật này đưa ra mối liên hệ giữa thông lượng của hai trường véc tơ này đi qua một mặt đóng với điện tích hay khối lượng bị bao phủ bởi mặt. Đối với trường hợp của điện trường, định luật này cũng là một trong bốn phương trình là nền tảng cho lý thuyết điện từ trường.
Định luật Gauss
Định luật Gauss về Điện trường
Dưới dạng tích phân, Mật độ Điện trường được viết như sau
:
Với
: là thông lượng điện,
: là điện trường,
: là diện tích của một hình vuông vi phân trên mặt đóng S,
: là điện tích được bao bởi mặt đó,
: là mật độ điện tích tại một điểm trong ,
: là hằng số điện của không gian tự do
: là tích phân trên mặt S bao phủ thể tích V.
Xem thêm thông tin và cách áp dụng định luật Gauss ở mặt Gaussian.
Dưới dạng vi phân, phương trình trở thành:
:
Với
: là toán tử div,
: D là cảm ứng điện trường (đơn vị C/m²),
: ρ là mật độ điện tích (đơn vị C/m³), không tính đến các điện tích lưỡng cực biên giới trong vật chất. Dạng vi phân được viết dưới dạng định lý Gauss.
Đối với vật chất tuyến tính, phương trình trở thành:
:
với là hằng số điện môi.
Định luật Gauss về Từ trường
Dưới dạng tích phân
:
Trọng trường
Bởi vì cả trọng lực và điện từ trường có cường độ lan toả tỉ lệ nghịch với bình phương khoảng cách giữa hai vật thể, chúng ta có thể liên hệ hai thứ đó sử dụng định luật Gauss bằng cách xem xét trường vectơ tương ứng của chúng và , với
: ,
và
: ,
với là hằng số trọng lực, là khối lượng của điểm nguồn, là bán kính (khoảng cách) giữa điểm nguồn đến vật thể khác, là hằng số điện môi của không gian tự do, và là điện tích của điểm nguồn.
Trong một cách tương tự chúng ta tính tích phân mặt cho điện từ trường để có được , chúng ta có thể chọn một mặt Gauss thích hợp để tìm câu trả lời cho thông lượng trọng lực. Với một điểm có khối lượng đặt tại gốc của trục tọa độ, chọn lựa hợp lý nhất cho mặt Gauss là hình cầu có bán kính với tâm là gốc tọa độ.
Chúng ta bắt đầu với dạng tích phân của định luật Gauss
: .
Một phần tử diện tích cực nhỏ chỉ đơn giản là diện tích của một góc đầy cực nhỏ, được định nghĩa như là
: .
Mặt Gaussian được chọn sao cho vectơ vuông góc với mặt đó là vectơ bán kính xuất phát từ gốc tọa độ. Với
: ,
chúng ta thấy tích vô hướng của hai vec tơ bán kính là đơn vị và cả cường độ của trường, , và bình phương của khoảng cách giữa mặt và điểm đang xét, , là không đổi trên mọi phần tử cực nhỏ của mặt đó. Điều này cho ta tích phân
: .
Tích phân mặt còn lại chỉ là diện tích bề mặt cầu (). Nếu chúng ta gộp điều này với phương trình trường trọng lực bên trên, ta có biểu thức về thông lượng trọng lực của một điểm có khối lượng.
:
Thông lượng trọng lực, cũng giống như là điện từ, không phụ thuộc vào bán kính của mặt cầu.
Cường độ điện trường
Cường độ Điện trường
:
Một điện tích Q đặt ở tâm một mặt cầu bán kính r, vector cường độ điện trường trên bề mặt cầu vuông góc với bề mặt, cùng cường độ ở mọi điểm trên mặt cầu đó, có dạng:
:
Với
: E là cường độ điện trường tại bán kính r,
: Q là điện tích bao quanh
: ε0 là hằng số điện.
Do đó sự phụ thuộc theo luật bình phương nghịch đảo quen thuộc trong định luật Coulomb đi theo từ định luật Gauss.
Định luật Gauss có thể được sử dụng để chứng tỏ rằng không có điện trường bên trong một lồng Faraday không có điện tích nào. Định luật Gauss là tương đương về mặt tĩnh điện với định luật Ampère, phát biểu liên quan đến từ tính. Cả hai phương trình sau này được hợp nhất vào các phương trình Maxwell.
Nó được công thức hóa bởi Carl Friedrich Gauss vào năm 1835, nhưng không công bố cho đến năm 1867. Bởi vì sự tương tự về mặt toán học, định luật Gauss có ứng dụng vào các đại lượng vật lý khác tuân theo một luật bình phương nghịch đảo như trọng lực hay cường độ của bức xạ. Xem thêm định lý Gauss.
Cường độ Từ trường
Cường độ Từ trường
:
Cường độ Từ trường của cộng dây thẳng dẩn điện
:Tập tin:Manoderecha.svg
:
Cường độ Từ trường của vòng tròn thẳng dẩn điện
:Tập tin:Magnetic_field_of_wire_loop.svg
:
Cường độ Từ trường của N vòng tròn thẳng dẩn điện
:Tập tin:Basic Inductor with B-field.svg
:
👁️
1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong vật lý và giải tích toán học, **định luật Gauss** là một ứng dụng của định lý Gauss cho các trường véctơ tuân theo luật bình phương nghịch đảo với khoảng cách. Ví dụ,
Trong vật lý, **định luật Ampere** là tương đương từ lực với định luật Gauss, được phát biểu bởi André-Marie Ampère. Nó liên kết sự lan truyền từ trường trong mạch kín với dòng điện
Đường tăng trưởng số lượng transistor trên bộ vi xử lý (dot) của Intel và định luật Moore (đường trên với chu kỳ 18 tháng, đường dưới chu kỳ 24 tháng **Định luật Moore** được
Trong vật lý, đặc biệt là điện từ học, **định luật Biot-Savart** là một phương trình mô tả từ trường được tạo ra bởi một dòng điện không thay đổi. Nó liên quan đến từ
nhỏ|Phân tích tác dụng lực đẩy Archimedes **Lực đẩy Archimedes** (hay **lực đẩy Ác-si-mét**) là lực tác động bởi một chất lưu (chất lỏng hay chất khí) lên một vật thể nhúng trong nó, khi
nhỏ|Lực hấp dẫn làm các [[hành tinh quay quanh Mặt Trời.]] Trong vật lý học, **lực hấp dẫn**, hay chính xác hơn là **tương tác hấp dẫn,** là một hiện tượng tự nhiên mà tất
**Sự ổn định của Hệ Mặt Trời** là một chủ đề được điều tra nghiên cứu nhiều trong thiên văn học. Mặc dù các hành tinh là ổn định khi được quan sát theo dòng
phải|nhỏ|James Clerk Maxwell Các **phương trình Maxwell** bao gồm bốn phương trình, đề ra bởi James Clerk Maxwell, dùng để mô tả trường điện từ cũng như những tương tác của chúng đối với vật
Từ trường của một thanh [[nam châm hình trụ.]] **Từ trường** là môi trường năng lượng đặc biệt sinh ra quanh các điện tích chuyển động hoặc do sự biến thiên của điện trường hoặc
**Luật tương hỗ bậc hai** hay **luật thuận nghịch bình phương** là một định lý trong lý thuyết số trong đó xét hai số nguyên tố lẻ, _p_ và _q_, và các mệnh đề :
thumb|Một môi trường điện môi cho thấy hiện tượng các điện tích định hướng tạo nên sự phân cực. Một môi trường như thế có thể có tỉ lệ điện thông với điện tích thấp
thumb|Một hậu quả của Theorema Egregium là [[Trái Đất không thể được hiển thị trên bản đồ mà không bị biến dạng. Phép chiếu Mercator, được hiển thị ở đây, giữ nguyên góc nhưng không
thumb|Điện trường phát ra từ một điện tích điểm dương **Điện trường** là một trường điện tạo ra từ các đường lực điện bao quanh lấy điện tích. Điện trường có thể được biểu diễn
Trong lý thuyết điều khiển tự động, bài toán điều khiển Gauss tuyến tính-bậc hai (LQG) là một trong những bài toán điều khiển tối ưu cơ bản nhất. Nó liên quan đến các hệ
phải|Bản đồ [[dị thường trọng lực của trọng trường Trái Đất từ vệ tinh GRACE.]] Trong vật lý học, **trường hấp dẫn** là một mô hình được sử dụng để giải thích sự ảnh hưởng
Tenxơ ứng suất Maxwell (đặt theo tên của nhà vật lý điện từ học James Clerk Maxwell) là một tenxơ hạng hai được sử dụng trong điện từ học cổ điển để đại diện cho
**Từ thông** là thông lượng đường sức từ đi qua một diện tích.Từ thông liên hệ trực tiếp với mật độ từ thông. Từ thông là tích phân của tích vô hướng giữa mật độ
**Điện từ học** là ngành vật lý nghiên cứu và giải thích các hiện tượng điện và hiện tượng từ, và mối quan hệ giữa chúng. Ngành điện từ học là sự kết hợp của
[[Đĩa bồi tụ bao quanh lỗ đen siêu khối lượng ở trung tâm của thiên hà elip khổng lồ Messier 87 trong chòm sao Xử Nữ. Khối lượng của nó khoảng 7 tỉ lần khối
**Vũ trụ** bao gồm tất cả các vật chất, năng lượng và không gian hiện có, được xem là một khối bao quát. Vũ trụ hiện tại chưa xác định được kích thước chính xác,
**Tĩnh từ học** là nghiên cứu về từ trường trong các hệ có các dòng điện ổn định (không thay đổi theo thời gian). Nó là từ tính tương tự của tĩnh điện, nơi có
Sự phát triển của Toán học cả về mặt tổng thể lẫn các bài toán riêng lẻ là một chủ đề được bàn luận rộng rãi - nhiều dự đoán trong quá khứ về toán
**Johann Carl Friedrich Gauß** (; ; ; 30 tháng 4 năm 1777 – 23 tháng 2 năm 1855) là một nhà toán học và nhà khoa học người Đức tài năng, người đã có nhiều
nhỏ|250x250px|Xác suất của việc tung một số con số bằng cách sử dụng hai con xúc xắc. **Xác suất** (Tiếng Anh: _probability_) là một nhánh của toán học liên quan đến các mô tả bằng
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
thumb|right|Quang học nghiên cứu hiện tượng [[tán sắc của ánh sáng.]] **Quang học** là một ngành của vật lý học nghiên cứu các tính chất và hoạt động của ánh sáng, bao gồm tương tác
**Đơn vị thiên văn** (ký hiệu: au) là một đơn vị đo chiều dài, xấp xỉ bằng khoảng cách từ Trái Đất đến Mặt Trời. Tuy nhiên, bởi vì khoảng cách này thay đổi khi
**Đại số** là một nhánh của toán học nghiên cứu những hệ thống trừu tượng nhất định gọi là cấu trúc đại số và sự biến đổi biểu thức trong các hệ thống này. Đây
**Phương trình liên tục** diễn tả một khái niệm chung về sự thay đổi liên tục của một đại lượng nào đó. Phương trình liên tục là một dạng của các định luật bảo toàn.
thumb|upright=1.3|Các [[hàm sóng của electron trong một nguyên tử hydro tại các mức năng lượng khác nhau. Cơ học lượng tử không dự đoán chính xác vị trí của một hạt trong không gian, nó
Nam châm vĩnh cửu, một trong những sản phẩm lâu đời nhất của từ học. **Từ học** (tiếng Anh: _magnetism_) là một ngành khoa học thuộc Vật lý học nghiên cứu về hiện tượng hút
## Sự hình thành thuyết tương đối tổng quát ### Những khảo sát ban đầu Albert Einstein sau này nói rằng, lý do cho sự phát triển thuyết tương đối tổng quát là do sự
**Máy gia tốc hạt** (máy gia tốc hạt nhân, máy gia tốc hạt cơ bản) là các thiết bị sử dụng các năng lượng bên ngoài truyền cho các hạt nhằm tăng vận tốc và
Thí nghiệm kiểm tra lý thuyết tương đối tổng quát đạt độ chính xác cao nhờ tàu thăm dò không gian [[Cassini–Huygens|Cassini (ảnh minh họa): Các tín hiệu radio được gửi đi giữa Trái Đất
**Georg Friedrich Bernhard Riemann** (phát âm như "ri manh" hay IPA ['ri:man]; 17 tháng 9 năm 1826 – 20 tháng 7 năm 1866) là một nhà toán học người Đức, người đã có nhiều đóng
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán
**Nhiễu xạ điện tử tán xạ ngược** (**EBSD**) là một kỹ thuật sử dụng máy quét điện tử (SEM) để nghiên cứu cấu trúc tinh thể của các vật liệu. EBSD được thực hiện trên
**Điện từ trường** (còn gọi là **trường Maxwell**) là một trong những trường của vật lý học. Nó là một dạng đặc trưng cho tương tác giữa các hạt mang điện và không phải là
**Leonhard Euler** ( , ; 15 tháng 4 năm 170718 tháng 9 năm 1783) là một nhà toán học, nhà vật lý học, nhà thiên văn học, nhà lý luận và kỹ sư người Thụy
phải|[[Tenxơ ứng suất Cauchy, một tenxơ hạng hai. Thành phần của tenxơ, trong hệ tọa độ Descartes 3 chiều, tạo thành ma trận
thumb|[[Alexander Friedmann]] **Phương trình Friedmann** là một tập hợp các phương trình trong vũ trụ học vật lý miêu tả sự mở rộng của vũ trụ trong các mô hình đồng nhất và đẳng hướng
**Nghĩa vụ nợ thế chấp** (**CDO**) là một loại chứng khoán được bảo đảm bằng tài sản (ABS) được cấu trúc với nhiều "đợt" được phát hành bởi các thực thể mục đích đặc biệt
**Giuseppe Piazzi** ( , ; 16 tháng 7 năm 1746 - 22 tháng 7 năm 1826) là một linh mục Công giáo người Ý thuộc dòng Theatine, nhà toán học và nhà thiên văn học.
Trong toán học, **vành** là một trong những cấu trúc đại số cơ bản. Nhiều đối tượng toán học có thể được xem xét như là vành, ví dụ như vành các hàm số liên
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
Trong toán học và khoa học máy tính, hàm **floor** (**phần nguyên nhỏ hơn**) và **ceiling** (**phần nguyên lớn hơn**) là các quy tắc cho tương ứng một số thực vào một số nguyên gần
Bài viết này là **danh sách các thuật toán** cùng một mô tả ngắn cho mỗi thuật toán. ## Thuật toán tổ hợp ### Thuật toán tổ hợp tổng quát * Thuật toán Brent: tìm