✨Rubidi

Rubidi

Rubidi là nguyên tố hóa học với kí hiệu Rb và số hiệu nguyên tử 37. Rubidi là một kim loại kiềm rất mềm, có màu trắng xám giống kali và natri. Rubidi cũng là kim loại kiềm đầu tiên trong nhóm có khối lượng riêng nặng hơn nước. Trên Trái Đất, rubidi trong tự nhiên xuất hiện với hai đồng vị: 72% là đồng vị bền , và 28% còn lại là đồng vị phóng xạ nhẹ , với chu kì bán rã là 48,8 tỉ năm–gấp ba lần tuổi của vũ trụ.

Rubidi được hai nhà hóa học người Đức Robert Bunsen và Gustav Kirchhoff đã phát hiện ra vào năm 1861 với kĩ thuật quang phổ phát xạ nguyên tử mới được phát triển khi đó. Tên của nguyên tố xuất phát từ cụm từ tiếng Latin rubidius, nghĩa là đỏ đậmmàu sắc của quang phổ phát xạ nguyên tử của rubidi. Các hợp chất của rubidi có nhiều ứng dụng trong hóa học và điện từ học. Bản thân rubidi rất dễ hóa hơi và có dải phổ hấp thụ thuận lợi, khiến kim loại này thường xuyên trở thành mục tiêu để điều khiển nguyên tử bằng laser. Rubidi không phải nguyên tố khoáng quan trọng với bất cứ sinh vật sống nào, tuy nhiên các ion rubidi có tính chất tương tự các ion kali, và trong các sinh vật nhân thực thì ion rubidi được hấp thụ và xử lý theo cách tương tự ion kali.

Đặc trưng

Tính chất vật lý

219x219px|trái|nhỏ|Rubidi hóa lỏng trên tay người. Rubidi là một kim loại màu trắng xám, mềm và dẻo. Nhiệt độ nóng chảy của Rubidi là 39,3 °C, và nhiệt độ sôi là 688 °C. Rubidi tạo hỗn hống với thủy ngân và tạo hợp kim với vàng, sắt, caesi, natri, và kali, nhưng không tạo hợp kim với lithi (mặc dù rubidi và lithi trong cùng một nhóm). Rubidi và kali khi cháy có màu tím rất giống nhau, do đó cần phải thực hiện các phép thử bằng quang phổ để phân biệt chúng.

Tính chất hóa học

left|thumb|Tinh thể rubidi màu bạc so với tinh thể [[caesi màu vàng |212x212px]] Rubidi có năng lượng ion hóa rất thấp, chỉ khoảng 406 kJ/mol. Rubidi có cấu hình electron [Kr]5s1 và nhạy cảm với ánh sáng., tạo ra rubidi hydroxide và khí hidro. Rubidi, có khối lượng riêng cao hơn kali, chìm xuống nước và phản ứng mãnh liệt; caesi thì nổ khi tiếp xúc với nước. Tuy nhiên, tốc độ phản ứng của tất cả các kim loại kiềm phụ thuộc vào diện tích bề mặt kim loại tiếp xúc với nước, với những giọt kim loại nhỏ sẽ phản ứng mạnh hơn. Rubidi cũng được ghi nhận có khả năng cháy khi để ngoài không khí.

Rubidi tạo một số oxide khi tiếp xúc với không khí như rubidi monoxide (), và ; rubidi trong môi trường giàu oxy tạo thành superoxide . Rubidi cũng tạo muối với các halogen như rubidi fluoride, rubidi chloride, rubidi bromide, và rubidi iodide. Hỗn hợp thông thường của rubidi có tính phóng xạ nhẹ (khoảng 670 Bq/g), đủ để làm mờ các cuộn phim trong khoảng 110 ngày. 30 đồng vị rubidi khác với chu kỳ bán rã dưới 3 tháng đã được tổng hợp; phần lớn đều có tính phóng xạ cao và có ít công dụng.

có chu kỳ bán rã là 4,88×1010 năm, lâu gấp 3 lần tuổi của vũ trụ, nên được coi là hạt nhân nguyên thủy. Vì dễ dàng thay thế cho kali trong các khoáng vật, nên tương đối phổ biến. Rb đã từng được sử dụng nhiều trong xác định niên đại đá; phân rã thành ổn định bằng cách bức xạ một hạt beta âm. Trong kết tinh phân đoạn, stronti có xu hướng tích lũy trong plagioclase, để lại rubidi trong pha lỏng. Vì vậy, tỷ lệ Rb/Sr trong macma còn sót lại có thể tăng lên theo thời gian, tạo ra trong các loại đá với các tỷ lệ Rb/Sr tăng lên, phụ thuộc vào sự phân dị mácma. Các tỷ lệ cao (từ 10 trở lên) có trong pecmatit. Nếu như lượng stronti ban đầu là đã biết hay có thể ngoại suy ra được thì niên đại của đá có thể xác định bằng cách đo hàm lượng Rb và Sr cũng như tỷ lệ của /. Niên đại chỉ có thể chỉ ra chính xác tuổi của khoáng vật nếu như đá đó không bị biến đổi sau này (xem Xác định niên đại bằng RubidiStronti).

Rubidi-82, một trong những đồng vị không tự nhiên của nguyên tố, được tạo ra bằng quá trình bắt giữ electron phân rã của stronti-82–một đồng vị có chu kỳ bán rã 25,36 ngày. Rubidi-82 có chu kì bán rã 76 giây và phân rã bằng quá trình phát xạ positron, tạo ra krypton-82. Trong tự nhiên, nó có mặt trong các khoáng vật như leucit, pollucit, carnalit và zinnwaldit, có thể chứa tới 1% oxide của rubidi. Lepidolit chứa khoảng 0,3% đến 3,5% rubidi và đây là nguồn thương mại của nguyên tố này. Một số khoáng vật của kali và kali chloride cũng chứa rubidi với khối lượng đáng kể về mặt thương mại.

Nước biển chứa trung bình 125 µg/L rubidi; con số này thấp hơn rất nhiều so với kali (408 mg/L), nhưng cao hơn lượng caesi trong nước biển (0,3 µg/L). Rubidi là nguyên tố phổ biến thứ 18 trong nước biển.

Do có bán kính ion lớn nên rubidi là một nguyên tố "không tương hợp." Trong quá trình kết tinh phân đoạn mácma, rubidi tập hợp cùng với nguyên tố tương đồng và nặng hơn caesi trong pha lỏng và kết tinh sau cùng. Do vậy, các mỏ rubidi và caesi lớn nhất là các thân quặng trong đới pecmatit được làm giàu qua quá trình này. Do rubidi thay thế vị trí của kali trong kết tinh mácma, quá trình làm giàu ít ảnh hưởng đến trường hợp của caesi. Các thân quặng trong đới pegmatit chứa một lượng khoáng vật caesi ở dạng pollucit hay các khoáng vật lithi như lepidolit, loại này là một sản phẩm phụ cung cấp rubidi. Cả hai nguồn này cũng là nguồn cung cấp caesi.

Lịch sử

thumb|left|upright|[[Gustav Kirchhoff (trái) và Robert Bunsen (giữa) phát hiện rubidi bằng quang phổ. (Henry Enfield Roscoe ở bên phải.)| alt= Three middle-aged men, with the one in the middle sitting down. All wear long jackets, and the shorter man on the left has a beard.]] Rubidi được Robert Bunsen và Gustav Kirchhoff phát hiện năm 1861 trong khoáng vật lepidolit bằng cách sử dụng phương pháp phân tích quang phổ. Do quang phổ phát xạ của nguyên tố cho ra các vạch đỏ tươi, nên tên của nguyên tố được chọn từ rubidus, nghĩa là "đỏ thẫm" trong tiếng Latinh.

Rubidi có mặt với lượng nhỏ trong lepidolit. Kirchhoff và Bunsen đã xử lý 150 kg lepidolit nhưng chỉ chứa 0,24% rubidi monoxide (Rb2O). Cả kali và rubidi đều tạo thành các muối không tan với acid chloroplatinic, nhưng các muối này thể hiện mức độ hòa tan hơi khác nhau trong nước nóng. Vì thế, có thể thu được rubidi hexachloroplatinat () ít tan hơn bằng kết tinh phân đoạn. Sau khi khử hexachloroplatinat với hydro, quá trình này tạo ra 0,51 gram rubidi chloride cho các nghiên cứu tiếp theo. Trong lần đầu cô lập các hợp chất caesi và rubidi quy mô lớn, Kirchhoff và Bunsen dùng 44.000 lít nước khoáng để thu được 7,3 gram caesi chloride và 9,2 gram rubidi chloride.

Hai nhà khoa học đã sử dụng rubidi chloride thu được để ước tính khối lượng nguyên tử của nguyên tố mới là 85,36 (giá trị được công nhận hiện nay là 85,47). Lần thử thứ hai để tạo ra kim loại rubidi, Bunsen đã khử được rubidi bằng cách nung cháy rubidi tartrat. Mặc dù rubidi được chưng cất có khả năng tự bốc cháy, nhưng họ vẫn xác định được tỷ trọng và điểm nóng chảy của rubidi. Chất lượng của nghiên cứu được thực hiện trọng thập niên 1860 có thể được thẩm định bởi độ chính xác của nó: tỉ trọng được xác định chênh lệch dưới 0,1 g/cm³ và điểm nóng chảy nhỏ hơn 1 °C theo giá trị được công nhận hiện nay.

Tính phóng xạ nhẹ của rubidi đã được phát hiện vào năm 1908, trước khi lý thuyết về đồng vị được xác lập vào thập niên 1910 và hoạt tính thấp là do chu kỳ bán rã dài trên 1010 năm của rubidi nên việc giải đoán trở nên phức tạp. Quá trình phân rã beta đã được chứng minh của thành đồng vị bền vẫn được thảo luận vào cuối thập niên 1940.

Rubidi có giá trị công nghiệp thấp cho tới thập niên 1920. Kể từ đó, ứng dụng quan trọng nhất của rubidi là trong nghiên cứu và phát triển, chủ yếu là các ứng dụng hóa học và điện tử. Năm 1995, rubidi-87 đã được sử dụng để tạo ra ngưng tụ Bose-Einstein; với những phát hiện này, Eric Allin Cornell, Carl Edwin Wieman và Wolfgang Ketterle đã giành giải Nobel vật lý năm 2001.

Sản xuất

Mặc dù rubidi có nhiều trong vỏ Trái Đất hơn caesi, nhưng do ứng dụng hạn chế và thiếu các quặng giàu rubidi nên việc sản xuất rubidi rất hạn chế, chỉ đạt khoảng 2 đến 4 tấn mỗi năm.

Trong nhiều năm trong khoảng thập niên 1950 đến 1960, một sản phẩm phụ của quá trình khai thác kaliAlkarblà nguồn rubidi chính. Alkarb chứa 21% rubidi, phần còn lại là kali và một lượng nhỏ caesi. Ngày nay các nhà sản xuất caesi lớn nhất như Tanco Mine, Manitoba, Canada, sản xuất rubidi ở dạng sản phẩm phụ từ pollucit. Rubidi cũng được xem xét sử dụng trong các máy phát nhiệt điện sử dụng nguyên lý từ thủy động lực học, trong đó các ion rubidi được tạo ra bằng cách đốt nóng ở nhiệt độ cao và cho di chuyển qua từ trường. Các ion này dẫn điện và đóng vai trò tương tự như của phần ứng điện trong máy phát điện, vì thế sinh ra dòng điện. Rubidi, đặc biệt là ở dạng hơi , là một trong những nhóm nguyên tử được sử dụng phổ biến nhất trong quá trinh làm lạnh laser và ngưng tụ Bose–Einstein. Các đặc trưng mong muốn của rubidi cho ứng dụng này bao gồm tính phổ biến và giá thành thấp của diode laser với bước sóng thích hợp cùng với nhiệt độ vừa đủ để duy trì áp suất hơi đáng kể. Đối với các ứng dụng nguyên tử lạnh yêu cầu tương tác có thể tùy chỉnh, được ưu tiên vì quang phổ Feshbach phong phú của nó.

Rubidi cũng được dùng để phân cực , nghĩa là tạo ra một thể tích của khí đã từ hóa, với các spin hạt nhân cùng hướng về một phía, thay vì ngẫu nhiên. Hơi rubidi được kích thích quang học bởi laser và Rb đã phân cực sẽ phân cực bằng tương tác siêu tinh tế. Các ô phân cực spin rất hữu ích trong phép đo sự phân cực neutron và trong quá trình tạo các chùm neutron phân cực cho các mục đích khác.

Yếu tố cộng hưởng trong đồng hồ nguyên tử sử dụng cấu trúc siêu tinh tế của các mức năng lượng rubidi, và rubidi hữu ích cho việc định thời gian với độ chính xác cao. Nó được sử dụng làm thành phần chính của các tham chiếu tần số thứ cấp (bộ dao động rubidi) trong các máy phát tại trạm di động và các thiết bị truyền, kết nối mạng và thử nghiệm điện tử khác. Những chuẩn rubidi này thường được sử dụng với hệ thống vệ tinh định vị toàn cầu để tạo ra "tiêu chuẩn tần số chính" có độ chính xác cao hơn và ít tốn kém hơn các chuẩn caesi. Các chuẩn rubidi như vậy được sản xuất hàng loạt để phục vụ cho ngành viễn thông.

Một số ứng dụng hiện nay hay tiềm năng của rubidi bao gồm chất lưu hoạt động trong các tua bin hơi, chất thu khí trong các ống chân không, và là một bộ phận của điện trở quang. Rubidi cũng được dùng trong một vài loại thủy tinh đặc biệt, trong sản xuất superoxide thông qua đốt cháy trong oxy, trong nghiên cứu các kênh ion kali trong sinh học, và làm hơi trong từ kế nguyên tử. hiện tại được sử dụng, cùng các kim loại kiềm khác, trong phát triển một dạng từ kế là SERF (spin-exchange relaxation-free: trao đổi spin hồi phục tự do). Rubidi-82 có thời gian bán rã rất ngắn: 76 giây, và quá trình điều chế rubidi-82 từ ​​sự phân rã của stronti-82 cần phải được thực hiện gần bệnh nhân.

Tác dụng đối với chứng hưng cảm và trầm cảm của rubidi đã được nghiên cứu. Bệnh nhân chạy thận nhân tạo bị trầm cảm thường cho thấy suy giảm nồng độ rubidi, do đó việc bổ sung rubidi có thể giúp cải thiện tình trạng trầm cảm. Trong một số thử nghiệm, rubidi được dùng dưới dạng rubidi chloride với liều lượng lên tới 720 mg mỗi ngày trong 60 ngày.

Cảnh báo và vai trò sinh học

Rubidi phản ứng mạnh với nước và có thể gây cháy. Để đảm bảo an toàn và độ tinh khiết của nó, rubidi cần được bảo quản trong dầu khoáng khô, trong chân không hay trong môi trường của các khí trơ. Rubidi tạo thành các peroxide khi tiếp xúc với một lượng không khí nhỏ khi khuếch tán vào trong dầu, và do đó việc lưu trữ phải tuân theo các biện pháp phòng ngừa tương tự việc lưu trữ kim loại kali.

Rubidi, như natri và kali, gần như luôn luôn có trạng thái oxy hóa +1. Cơ thể người có xu hướng coi các ion như là các ion kali, và vì thế tích lũy rubidi trong chất điện giải của cơ thể. Các ion rubidi nói chung không độc hại; một người cân nặng 70 kg chứa trung bình khoảng 0,36 g rubidi, và giá trị này tăng lên 50 đến 100 lần không thể hiện các hiệu ứng tiêu cực ở những người tham gia thử nghiệm. Chu kỳ bán rã sinh học của rubidi ở người là 31–46 ngày. Mặc dù có thể thay thế một phần kali bằng rubidi, nhưng những con chuột có hơn 50% hàm lượng kali bị thay thế trong các tế bào thì tử vong.

👁️ 2 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Rubidi(I) hydroxide** là một hợp chất hoá học với công thức là **RbOH** là loại hóa chất mạnh và kiềm được tạo thành bởi một ion rubidi và một ion hydroxide. Rubidi hydroxide không xuất
**Rubidi amide** là một hợp chất vô cơ của rubidi và nhóm amide với công thức hóa học **RbNH2**. ## Điều chế Rubidi amide được điều chế bằng cách cho rubidi kim loại nung nóng
**Rubidi Oxide** là một hợp chất hóa học có thành phần chính gồm hai nguyên tố rubidi và oxy, cấu thành hợp chất hóa học có công thức quy định là Rb2O. Rubidi Oxide có
**Rubidi nitrat** là một hợp chất vô cơ có thành phần gồm nguyên tố rubidi và nhóm nitrat, có công thức hóa học là RbNO3. Muối nitơ kim loại kiềm này có màu trắng và
**Rubidi chloride** là một hợp chất với công thức hóa học RbCl. Muối halogen của kim loại kiềm bao gồm rubidi và chlor. Chất này có ứng dụng rộng rãi từ điện hóa tới sinh
**Rubidi superoxide** hoặc **rubidi hyperoxide** là một hợp chất vô cơ có công thức **RbO2**. Về trạng thái oxy hóa, superoxide có điện tích âm và rubidi có điện tích dương nên công thức cấu
**Rubidi perchlorat** (công thức hóa học: **RbClO4**), là muối perchlorat của rubidi. Nó là một chất oxy hóa mạnh như tất cả các hợp chất perchlorat khác. ## Tổng hợp và tính chất Rubidi perchlorat
**Rubidi cyanide** (công thức hóa học: **RbCN**) là muối rubidi của hydro cyanide. Nó là một chất rắn màu trắng, dễ hòa tan trong nước, có mùi quả hạnh nhân, và bề ngoài hơi giống
**Rubidi hydride** là hydride của rubidi. Nó có công thức RbH và là một hydride của kim loại kiềm, được tổng hợp bằng cách cho rubidi phản ứng với khí hydro. Như hydride của các
**Rubidi carbonat** có công thức hóa học là **Rb2CO3**, là một muối carbonat của rubidi. Nó khá ổn định và có thể dễ dàng hòa tan trong nước. ## Điều chế Muối này có thể
**Rubidi** là nguyên tố hóa học với kí hiệu **Rb** và số hiệu nguyên tử 37. Rubidi là một kim loại kiềm rất mềm, có màu trắng xám giống kali và natri. Rubidi cũng là
**Rubidi-82 chloride** là một dạng rubidi chloride có chứa.đồng vị phóng xạ của rubidi. Nó được bán trên thị trường dưới tên thương hiệu Cardiogen-82 bởi Bracco Diagnostics để sử dụng trong hình ảnh tưới
**Caesi** (hay còn gọi là **Xê-si**, tiếng Anh: **cesium**, tiếng Latinh: "caesius") là một nguyên tố hóa học trong bảng tuần hoàn có ký hiệu **Cs** và số nguyên tử bằng 55. Nó là một
**Kim loại kiềm** (tiếng Anh: _Alkali metal_) là một nhóm các nguyên tố hóa học gồm có lithi (Li), natri (Na), kali (K), rubidi (Rb), caesi (Cs) và franci (Fr). Các kim loại kiềm cùng
thumb|[[Bảng tuần hoàn]] **Nguyên tố hóa học**, thường được gọi đơn giản là **nguyên tố**, là một chất hóa học tinh khiết, bao gồm một kiểu nguyên tử, được phân biệt bởi số hiệu nguyên
Cấu trúc hình thành chính của [[ammoniac, một trong những loại base được sử dụng phổ biến nhất trên thế giới.
Chú thích:
**H**: Hydro
**N**: Nitơ]] phải|nhỏ|[[Xà phòng là base yếu được tạo thành do phản ứng
nhỏ|Hình vẽ minh hoạ các trạng thái của các phân tử trong các pha rắn, lỏng và khí. [[Sơ đồ pha đặc trưng. Đường chấm thể hiện ứng xử không theo quy luật của nước.
Trạng thái ngưng tụ Bose-Einstein của các boson, trong trường hợp này là các [[nguyên tử rubidi. Hình vẽ là phân bố tốc độ của chuyển động của các nguyên tử, theo vị trí. Màu
Trong địa vật lý, **dị thường từ** là sự biến động cục bộ từ trường của Trái Đất hay thiên thể, do các thay đổi về từ tính hay hóa học của đất đá. Việc
phải|nhỏ|370x370px|Bốn trạng thái phổ biến của vật chất. Theo chiều kim đồng hồ từ trên cùng bên trái, các trạng thái này là chất rắn, chất lỏng, plasma (li tử) và chất khí, được biểu
**Titan(III) sunfat** là một hợp chất vô cơ, một muối của kim loại titan và axit sunfuric có công thức hóa học **Ti2(SO4)3** – tinh thể màu xanh lục, không tan trong nước, tạo thành
**Định tuổi bằng phát quang**, **định tuổi bằng phát sáng** hay **Xác định niên đại bằng phát quang** đề cập đến nhóm các phương pháp xác định khoảng thời gian trôi kể từ khi các
** Ngưng tụ Fermion** hay ** Ngưng tụ Fermi-Dirac** là một pha siêu lỏng tạo thành từ các hạt cơ bản fermion có spin nửa nguyên ở nhiệt độ rất thấp. Nó gần liên quan
Mảnh eclogit với [[granat (đỏ) và chất nền omphacit (lục ánh xám). Các tinh thể màu thiên thanh là kyanit. Thạch anh màu trắng cũng có mặt, có lẽ là từ tái kết tinh coesit.
Trạng thái [[ngưng tụ Bose-Einstein|đông đặc Bose-Einstein của các boson, trong trường hợp này là các nguyên tử rubidi. Hình vẽ là phân bố tốc độ của chuyển động của các nguyên tử, theo vị
**Tốc độ ánh sáng** trong chân không, ký hiệu là , là một hằng số vật lý cơ bản quan trọng trong nhiều lĩnh vực vật lý. Nó có giá trị chính xác bằng 299.792.458 m/s
**Natri** (bắt nguồn từ tiếng Tân Latinh: _natrium_; danh pháp IUPAC: **sodium**; ký hiệu hóa học: **Na**) là một nguyên tố hóa học thuộc nhóm kim loại kiềm có hóa trị một trong bảng tuần
**Thủy ngân** (**水銀**, dịch nghĩa Hán-Việt là "nước bạc") là nguyên tố hóa học có ký hiệu **Hg** (từ tên tiếng Latinh là **_H**ydrar**g**yrum_ ( hy-Drar-jər-əm)) và số hiệu nguyên tử 80. Nó có nhiều
Trong các khoa học tự nhiên về lịch sử tự nhiên, **địa thời học** là một khoa học để xác định độ tuổi tuyệt đối của các loại đá, hóa thạch và trầm tích, với
**Từ kế** hay **máy đo từ** là thiết bị dùng để đo đạc _cường độ_ và có thể cả _hướng_ của từ trường trong vùng đặt _cảm biến từ trường_. _Cảm biến từ trường_ hoạt
**Franci**, trước đây còn gọi là **eka-caesi** hay **actini K**, là một nguyên tố hóa học trong bảng tuần hoàn có ký hiệu **Fr** và số hiệu nguyên tử bằng 87. Nó có độ âm
**Gali** (bắt nguồn từ từ tiếng Pháp _gallium_ (/ɡaljɔm/)), còn được viết là **ga-li**, hay thép, làm cho chúng trở nên rất giòn. Ngoài ra, gali kim loại cũng dễ dàng tạo ra hợp kim
**Plutoni** là một nguyên tố hóa học hiếm, có tính phóng xạ cao với ký hiệu hóa học **Pu** và số nguyên tử 94. Nó là một kim loại thuộc nhóm actini với bề ngoài
**Gustav Robert Kirchhoff** (12 tháng 3 năm 1824 – 17 tháng 10 năm 1887) là một nhà vật lý người Đức đã có những đóng góp cơ bản về các khái niệm trong mạch điện,
**Natri bisulfide** là một hợp chất vô cơ có công thức hóa học **NaHS**. Hợp chất này là sản phẩm của phản ứng nửa trung hòa hydro sulfide với natri hydroxide. NaHS là hóa chất
**Định tuổi bằng đồng vị phóng xạ** hay **xác định niên đại bằng đồng vị phóng xạ** là một kỹ thuật xác định tuổi của vật liệu, dựa trên sự so sánh giữa lượng các
**Robert Wilhelm Eberhard Bunsen** (ngày 31 tháng 3, năm 1811 – ngày 16 tháng 8, năm 1899) là nhà hóa học người Đức. Ông nghiên cứu quang phổ phát xạ của các nguyên tố bị
thumb|upright=1.2|Tinh thể [[osmi, một kim loại nặng có khối lượng riêng lớn gấp hai lần chì]] **Kim loại nặng** (tiếng Anh: _heavy metal_) thường được định nghĩa là kim loại có khối lượng riêng, khối
**Niên biểu hóa học** liệt kê những công trình, khám phá, ý tưởng, phát minh và thí nghiệm quan trọng đã thay đổi mạnh mẽ vốn hiểu biết của nhân loại về một môn khoa
**Germani đichloride** là một hợp chất vô cơ của germani và clo với công thức hóa học **GeCl2**. Nó là một chất rắn màu vàng nhạt và chứa germani ở trạng thái oxy hóa +2.
**Tổng hợp hạt nhân** là quá trình tạo mới hạt nhân nguyên tử từ nucleon (proton và neutron) tồn tại trước đó. Các hạt nhân đầu tiên được hình thành vài phút sau Vụ nổ
Tính đến nay, người ta đã phát hiện và tổng hợp được 118 nguyên tố hóa học, trong số đó 98 nguyên tố đầu được tìm thấy trong tự nhiên. Có 83 nguyên tố nguyên
**Caesi hydroxide** (CsOH) là một hợp chất gồm một ion caesi và một ion hydroxide. Nó là một base mạnh (pKb=-1.76), giống các hydroxide kim loại kiềm khác như natri hydroxide và kali hydroxide. Trên
Trong y học, **dấu ấn sinh học** là một chỉ số đo lường được mức độ nghiêm trọng hoặc sự hiện diện của một số trạng thái bệnh. Nói chung, một dấu ấn sinh học
**Dấu ấn sinh học**, hoặc **dấu hiệu sinh học** là một chỉ số đo lường được của một số trạng thái hoặc tình trạng sinh học. Dấu ấn sinh học thường được đo lường và
thumb|Diễn giải hiệu ứng quang điện **Âm cực quang** hay _Photocathode_ là một _điện cực tích điện âm_ có phủ một lớp hợp chất cảm quang, khi có một lượng tử ánh sáng (photon) có
**Máy đo từ lượng tử**, còn gọi là _Máy đo từ kiểu bơm quang học_ (Optically Pumped Magnetometer), là loại _máy đo từ_ hoạt động dựa trên quan sát hiện tượng phân tách _mức năng
**Thăm dò từ** (Magnetic Method) là một phương pháp của Địa vật lý, thực hiện đo từ trường Trái Đất để phân định ra phần _dị thường từ_, từ đó xác định phân bố mức
Danh sách đồng vị đã được tìm thấy. ## Chu kỳ 1 ### Neutroni, Z= 0 Neutroni là tên đặt cho hạt là tổ hợp chỉ gồm neutron, được xem là nguyên tố về vật
nhỏ|Viên nang Caesium 137 **Caesi-137** (, Cs-137), **cesium-137**, hay **caesi phóng xạ** là một đồng vị phóng xạ của caesi được hình thành từ phản ứng phân hạch hạt nhân của urani-235 và các đồng