✨Plutoni

Plutoni

Plutoni là một nguyên tố hóa học hiếm, có tính phóng xạ cao với ký hiệu hóa học Pu và số nguyên tử 94. Nó là một kim loại thuộc nhóm actini với bề ngoài màu trắng bạc và bị xỉn khi tiếp xúc với không khí, tạo thành một lớp phủ mờ khi bị oxy hóa. Nguyên tố này thông thường biểu hiện (exhibit) 6 dạng thù hình (allotrope) và bốn trạng thái oxy hóa. Nó phản ứng với cacbon, halogen, nitơ và silicon. Khi tiếp xúc với không khí ẩm, nó tạo thành các oxide và hydride làm thể tích các mẫu giãn nở lên đến 70%, hay nói cách khác là nó bong ra thành dạng bột có thể tự bốc cháy. Nó cũng là một chất độc phóng xạ mà tích tụ trong tủy xương. Những đặc tính này và các tính chất khác khiến cho việc xử lý plutoni trở nên nguy hiểm.

Plutoni là nguyên tố nguyên thủy nặng nhất, đồng vị bền nhất của nó là plutoni-244 có chu kỳ bán rã khoảng 80 triệu năm đủ lâu để nguyên tố này có thể được tìm thấy ở dạng vết trong tự nhiên. Nhưng plutoni là sản phẩm phụ thường xuyên có mặt khi nguyên tử urani bị tách làm đôi trong lò phản ứng hạt nhân. Một số hạt hạ nguyên tử được tăng tốc trong quá trình phân hạch biến đổi urani thành plutoni.

Đồng vị quan trọng nhất của plutoni là plutoni-239, với chu kỳ bán rã 24.100 năm. Plutoni-239 là đồng vị có ích nhất trong các vũ khí hạt nhân. Plutoni-239 và plutoni-241 có khả năng phân hạch, có nghĩa là các nguyên tử của nó có thể tách ra bằng cách bắn phá bởi neutron nhiệt chuyển động chậm giải phóng năng lượng, tia gamma và nhiều neutron hơn. Các neutron này sau đó có thể duy trì phản ứng hạt nhân dây chuyền, được ứng dụng trong các vũ khí hạt nhân và lò phản ứng hạt nhân.

Plutoni-238 có chu kỳ bán rã 88 năm và phát ra các hạt alpha. Nó là một nguồn cung cấp nhiệt trong các máy phát điện hạt nhân, một loại động cơ cung cấp điện cho tàu không gian cỡ nhỏ. Plutoni-240 có tỷ lệ phân hạch tự phát cao, làm tăng thông lượng neutron của bất kỳ mẫu nào. Sự có mặt của plutoni-249 hạn chế khả năng sử dụng của các mẫu trong vũ khí hạt nhân hoặc nhiên liệu hạt nhân, và xác định cấp của nó. Các đồng vị của plutoni đắt và khó tách, vì thế các đồng vị riêng biệt thường được sản xuất trong các lò phản ứng chuyên dụng.

Plutoni được một nhóm nghiên cứu đứng đầu là Glenn T. Seaborg và Edwin McMillan tổng hợp đầu tiên năm 1940 tại Đại học California, Berkeley bằng cách bắn phá urani-238 bởi hạt nhân deuteron. McMillan đặt tên nguyên tố mới theo tên Pluto (Sao Diêm Vương), và Seaborg đề nghị ký hiệu nó là Pu. Sau đó, một lượng nhỏ plutoni ở dạng vết cũng được phát hiện trong tự nhiên. Việc tạo ra plutoni được sử dụng với lượng lớn lần đầu tiên trong phần chính của dự án Manhattan suốt chiến tranh thế giới thứ 2, để tạo ra bom nguyên tử đầu tiên. Vụ thử hạt nhân đầu tiên, "Trinity" (tháng 7 năm 1945), và bom nguyên tử lần thứ 2 được sử dụng để phá hủy thành phố (Nagasaki, Nhật Bản tháng 8 năm 1945), "Fat Man", cả hai lõi đều dùng plutoni-239. Các nghiên cứu thí nghiệm ảnh hưởng của plutoni đối với con người đã được tiến hành mà không có sự đồng ý trước, và một số tai nạn (criticality accident), gây chết người đã xảy ra trong và sau chiến tranh. Chất thải plutoni từ các nhà máy điện hạt nhân và từ việc giải trừ vũ khí hạt nhân được tạo ra trong suốt thời kỳ chiến tranh lạnh là những mối nguy hiểm cho môi trường. Các nguồn khác của plutoni trong môi trường như bụi phóng xạ từ các vụ thử hạt nhân trên mặt đất (hiện nay đã bị cấm).

Tính chất

Tính chất vật lý

trái|nhỏ|Tỷ trọng của plutoni theo nhiệt độ

Plutoni có màu trắng bạc sáng ban đầu nhìn thì rất giống niken, nhưng nó bị oxy hóa rất nhanh trong không khí làm chuyển sang màu xám tối, mặc dù đôi khi cũng gặp màu lục xanh oliu và lục vàng. Ở nhiệt độ phòng, plutoni có dạng thu hình α (alpha). Hình dạng cấu trúc phổ biến nhất của nguyên tố này giòn và cứng giống như gang xám trừ khi nó ở dạng hợp kim với các kim loại khác làm cho nó mềm và dễ uốn/dát. Không giống với hầu hết kim loại khác, nó không dẫn nhiệt và dẫn điện tốt. Plutoni có điểm nóng chảy thấp (640 °C) và có điểm sôi cao bất thường (3,327 °C).

Điện trở suất của plutoni ở nhiệt độ phòng là rất cao so với mặt bằng chu của các kim loại, và giá trị này sẽ cao hơn ở nhiệt độ thấp hơn, đó là điều bất thường đối với một kim loại.

Không giống hầu hết các kim loại khác, plutoni tăng tỷ trọng khoảng 2,5% khi nó nóng chảy, nhưng tỷ trọng của kim loại lỏng thì thể hiện sự suy giảm tuyến tính theo nhiệt độ. Gần điểm nóng chảy, plutoni lỏng cũng có độ nhớt và ứng suất mặt rất cao so với các kim loại khác. Các dạng thù hình khác nhau về hình dạng sắp xếp của nguyên tố có điểm rất giống nhau là nội năng nhưng có tỉ trọng và cấu trúc tinh thể thay đổi đáng kể. Điều này làm cho plutoni rất nhạy cảm với những thay đổi về nhiệt độ, áp suất hoặc và điều đó làm cho thể tích thay đổi đặc trưng sau khi chuyển pha từ dạng thù hình này sang sang khác. Tỷ trọng của các thù hình khác nhau thay đổi từ 16,00 g/cm³ đến 19,86 g/cm³. Các nguyên nhân dẫn đến sự phức tạp về các pha thì chưa được hiểu một cách toàn vẹn. Dạng α có cấu trúc tinh thể đơn tà có tính đối xứng thấp, có tính giòn, bền, nén được, và dẫn suất kém. Pha ε là dạng thù hình rắn ở nhiệt độ cao nhất, thể hiện tính tự khuếch tán nguyên tử cao bất thường so với các nguyên tố khác. Đây là kim loại actini có tính phóng xạ, đặc biệt là đồng vị plutoni-239 là một trong 3 đồng vị phân hạch nguyên thủy plutoni-241 cũng có khả năng phân hạch cao. Xét về khả năng phân hạch, một đồng vị hạt nhân nguyên tử phải có khả năng tách đôi khi bị tác động bởi neutron chuyển động chậm, và giải phóng đủ lượng neutron cần thiết để duy trì phản ứng dây chuyền.

Plutoni-239 có hệ số sinh neutron (k) lớn hơn 1, do đó nếu kim loại có đủ khối lượng và yếu tố hình học thích hợp (như khối cầu nén), nó có thể đạt đến khối lượng tới hạn. Trong quá trình phân hạch, một phần năng lượng lên kết được giải phóng ở dạng nhiệt, điện từ và động năng mal; một kg plutoni-239 có thể tạo ra một vụ nổ tương đương với 20.000 tấn thuốc nổ TNT.) nên sẽ làm tăng mức neutron ban đầu và làm tăng nguy cơ đạt đến trang thái siêu tới hạn cực nhanh mà chưa đạt đến trạng thái tối đa của một chuỗi phản ứng dây chuyền cần thiết. Plutoni được xác định đạt cấp vũ khí, cấp nhiên liệu hay cấp năng lượng lò phản ứng tùy thuộc vào phần trăm plutoni-240 có trong đó. Plutoni cấp vũ khí chứa ít hơn 7% plutoni-240, còn cấp nhiên liệu thì chứa từ 7% đến dưới 19%, và cấp năng lượng lò phản ứng thì chứa từ 19% plutoni-240 trở lên. Plutoni siêu cấp chứ đồng vị plutoni-240 ít hơn 4% thì được dùng trong các vũ khí đặt trên các tàu và tàu ngầm của hải quân Hoa Kỳ do nó có độ phóng xạ thấp hơn. Đồng vị plutoni-238 không thể phân hạch nhưng có thể trải qua quá trình phân hạch một cách dễ dàng bằng cách dùng neutron nhanh và nó phát ra hạt alpha.

Các đồng vị của plutoni có số khối nằm trong khoảng từ 228 đến 247. Các cơ chế phân rã ban đầu của các đồng vị có số khối thấp hơn đồng vị bền nhất plutoni-244, là phân hạch tự phát, phát ra hạt alpha và hầu hết tạo thành các đồng vị urani (92 proton) và neptuni (93 proton). Cơ chế phân rã ban đầu đối với các đồng vị có số khối cao hơn đồng vị plutoni-244 là phát ra hạt beta và hầu hết tạo thành các đồng vị americi (95 proton). Plutoni-241 là đồng vị mẹ của chuỗi phân rã neptuni phân rã tạo ra americi-241 và hạt β hoặc electron.

Plutoni-238 và 239 là các đồng vị tổng hợp phổ biến nhất.

:\mathrm{^{238}{\ 92}U\ +\ ^{1}{0}n\ \longrightarrow \ ^{239}{\ 92}U\ \xrightarrow[23.5 \ min]{\beta^-} \ ^{239}{\ 93}Np\ \xrightarrow[2.3565 \ d]{\beta^-} \ ^{239}_{\ 94}Pu}

Neutron từ sự phân hạch urani-235 được bắt giữ bởi hạt nhân urani-238 để tạo ra urani-239; qua một phân rã beta sẽ biến đổi một neutron thành proton để tạo ra Np-239 (chu kỳ bán rã 2,36 ngày) và qua một phân rã beta khác để tạo ra plutoni-239. Những người làm việc cho dự án Tube Alloys đã dự đoán trên lý thuyết phản ứng nào năm 1940.

Plutoni-238 được tổng hợp từ việc bắn phá urani-238 bằng các hạt nhân deuteron theo phản ứng sau:

:\mathrm{^{238}{\ 92}U\ +\ ^{2}{1}D\ \longrightarrow \ ^{238}{\ 93}Np\ +\ 2\ ^{1}{0}n \quad;\quad ^{238}{\ 93}Np\ \xrightarrow[2.117 \ ]{\beta^-} \ ^{238}{\ 94}Pu}

Trong quá trình này, hạt nhân Deuteri đụng vào urani-238 sinh ra 2 neutron và neptuni-238, đến lượt nó neptuni-238 phân rã tự phát bằng cách phát ra các hạt beta âm để tạo thành plutoni-238.

Nhiệt phân rã và đặc điểm phân hạch

Các đồng vị plutoni trải qua phân rã phóng xạ sinh ra nhiệt phân rã. Các đồng vị khác nhau sinh ra những lượng nhiệt khác nhau theo khối lượng của chúng. Nhiệt phân rã thường được tính theo đơn vị watt/kilogram, hay milliwatt/gram.

Americi-241, sản phẩm phân rã của plutoni-241, có chu kỳ bán rã 430 năm, 1,2 phân hạch tự phát/1 gram/1 giây, và nhiệt phân rã là 114 watt/kg. Khi phân rã nó phát ra các tia gamma có khả năng đâm xuyên mạnh. Sự có mặt của nó trong plutoni, xác định theo hàm lượng ban đầu của plutoni-241, được xem là làm tăng nguy hiểm phơi nhiễm phóng xạ đối với các cấu túc xung quanh và con người.

Các hợp chất

Các trạng thái oxy hóa của plutoni trong dung dịch|alt=Five liuids in glass bottles: violet, label Pu(III); dark brown, label Pu(IV)HClO4; light purple, label Pu(V); light brown, label Pu(VI); dark green, label Pu(VII). Ở nhiệt độ phòng, plutoni nguyên chất có màu bạc nhưng sẽ chuyển sang màu xỉn khi bị oxy hóa. Plutoni có 4 trạng thái oxy hóa phổ biến trong dung dịch gốc nước và một dạng hiềm gặp hơn gồm:

  • Pu(III), ion Pu3+ (oải hương lam)
  • Pu(IV), ion Pu4+ (nâu vàng)
  • Pu(V), ion PuO2+ (hồng tím)
  • Pu(VI), as PuO22+ (vàng hồng)
  • Pu(VII), as PuO53− (lục)–ion hóa trị 7 thì hiếm gặp

Màu sắc của các dung dịch plutoni tùy thuộc vào trạng thái oxy hóa và anion acid tự nhiên. Anion acid ảnh hưởng đến cấp độ tạp phức - cách mà cách nguyên tử liên kết với một nguyên tử trung tâm của các đồng vị plutoni.

Plutoni kim loại được tạo ra từ phản ứng của plutoni tetrafluoride với bari, calci hoặc lithi ở 1200 °C. Nó phản ứng với các acid, oxy, và hơi nước nhưng không phản ứng với kiềm, và dễ dàng hòa tan trong các acid clohydric, hydroiodic và perchloric. Kim loại nóng chảy phải được cất giữ trong môi trường chân không hoặc khí trơ để ngăn phản ứng với không khí.

Tạo hợp kim

Plutoni có thể tạo một số hợp kim và các hợp chất trung giann với hầu hết các kim loại khác, ngoại trừ các kim loại kiềm như lithi, natri, kali, và rubidi; và các kim loại kiềm thổ như magiê, calci, stronti, và bari; và kim loại đất hiếm như europi và ytterbi.

  • Plutoni-galli được dùng để ổn định hóa pha δ của plutoni, nhằm tránh các vấn đề gặp phải khi nó chuyển sang pha α và pha α-δ. Ứng dụng chủ yếu của nó là trong các pit của implosion nuclear weapons.
  • Plutoni-nhôm là một hợp kim thay thế cho hợp kim Pu-Ga. Nó là thành phần ban đầu dùng trong việc ổn định hóa pha δ, nhưng nó có khuynh hướng phản ứng với các hạt alpha và giải phóng neutron làm giảm công năng của nó trong các vũ pit của vũ khí hạt nhân. Hợp kim plutoni-nhôm cũng có thể được ứng dụng làm một phần của nhiên liệu hạt nhân.
  • Hợp kim plutoni-galli-coban (PuCoGa5) là một chất siêu dẫn phi truyền thống ở nhiệt độ dưới 18,5 kelvin, cường độ lớn hơn giá trị cao nhất giữa các hệ fermion nặng, và có dòng điện tới hạn lớn.
  • Hợp kim plutoni-zirconi có thể được sử dụng làm nhiên liệu hạt nhân.
  • Các hợp kim plutoni-ceriplutoni-ceri-coban cũng được dùng làm nhiên liệu hạt nhân.
  • Plutoni-urani, với khoảng 15–30% mol. plutoni, có thể được dùng làm nhiên liệu hạt nhân cho các lò phản ứng tái sinh nhan. Do tính tự cháy và sự nhạy cảm cao của nó đối với ăn mòn tại điểm tự bốc cháy hay việc phân hủy sau khi tiếp xúc với không khí nên cần tạo hợp kim với các thành phần khác. Thêm nhôm, cacbon hay đồng vào sẽ không làm cải thiện tôlàm tăng tôc độ tự phân hủy một cách đáng kể; còn nếu thêm zirconi và sắt sẽ tăng tính chống ăn mòn nhưng chúng có thể phân hủy trong vài tháng trong không khí. nếu thêm vào titan hay zirconi sẽ làm tăng điểm nóng chảy của hợp kim.
  • Các hợp kim plutoni-urani-titanplutoni-urani-zirconi đã được nghiên cứu để dùng làm nhiên liệu hạt nhân. Việc thêm vào nguyên tố thứ 3 sẽ làm tăng khả năng chống ăn mòn, giảm tính cháy, và tăng tính dẻo, tính kéo sợi, độ bền và sự nở vì nhiệt. Plutoni-urani-molybden có khả năng chống ăn mòn tốt nhất, vì nó tạo thành một lớp oxide mỏng bảo vệ, nhưng với titan và zirconi thì chỉ có tác dụng về mặt vật lý. Tỷ lệ plutoni-239/urani ở urani Mỏ Cigar Lake dao động trong khoảng từ đến . Thậm chí một lượng nhỏ hơn của plutoni-244 nguyên thủy có mặt trong tự nhiên do chúng có chu kỳ bán rã tương đối cao khoảng 80 triệu năm. Các hàm lượng vết của Pu-239 có nguồn gốc từ các kiểu sau: trong những trường hợp hiếm, U-238 trải qua phân hạch tự phát, và trong quá trình này, hạt nhân phát ra một hoặc hai neutron tự do cùng với động năng. Khi một trong các neutron này va chạm vào nguyên tử U-238 khác, nó bị thấp thụ tạo ra U-239. Với thời gian tồn tại khá ngắn, U-239 phân rã thành neptuni-239 (Np-239), và sau đó Np-239 phân rã thành Pu-239.

Vì đồng vị Pu-240 có thời gian tồn tại tương đối lâu có mặt trong chuỗi phân rã của plutoni-244, nó cũng có thể có mặt, mặc dù gấp 10.000 lần nhưng vẫn hiếm hơn. Cuối cùng, một lượng cực nhỏ plutoni-238 tham gia vào phân rã beta kép của urani-238 cực kì hiếm gặp, được tìm thấy trong các mẫu urnai tự nhiên.

Một lượng vết nhỏ plutoni thường được tìm thấy trong cơ thể con người từ các nguồn trong các vụ thử hạt nhân dưới nước và trong khí quyển và một lượng nhỏ từ các tai nạn hạt nhân lớn. Hầu hết các vụ thử hạt nhân dưới nước và trong khí quyển đã bị dừng theo Hiệp ước Cấm thử hạt nhân năm 1963, trong đó, các nước tham gia ký kết gồm Hoa Kỳ, Vương quốc Anh, Liên Xô, và các nước khác. Việc thử vũ khí hạt nhân trong khí quyển đã được tiếp tục ở các nước không tham gia vào Hiệp ước trên như Trung Quốc (thử bom hạt nhân trên sa mạc Gobi năm 1964, thử bom hydro năm 1967, và các thử nghiệm sau đó), và Pháp (thử trong thập niên 1980).

Plutoni-239 là đồng vị dồi dào nhất của plutoni có khả năng dùng để chế tạo vũ khí hạt nhân và trong lò phản ứng.

Cũng có giả thuyết cho rằng một lượng nhỏ plutoni được tạo ra từ việc bắn phát các quặng urani bởi tia vũ trụ.

Lịch sử

Phát hiện

Enrico Fermi và nhóm nhà khoa học của Đại học Rome đã thông báo rằng họ phát hiện ra nguyên tố thứ 94 năm 1934. Fermi gọi nguyên tố này là hesperium và đã đề cập đến nó trong Nobel Lecture của ông năm 1938. Thực sự, mẫu đó là một hỗn hợp gồm bari, krypton, và các nguyên tố khác, nhưng điều đó đã chưa được biết đến vào thời điểm đó do sự phân hạch hạt nhân chưa được phát hiện.

nhỏ|[[Glenn T. Seaborg và nhóm nghiên cứu của ông ở Berkeley là người đầu tiên tạo ra plutoni.|alt=Picture of an elderly man in a suit facing the left to the viewer.]] Plutoni (đặc biệt là plutoni-238) đã được tạo ra đầu tiên vào ngày 14 tháng 12 năm 14, 1940, và được xác định tính chất hóa học vào ngày 23 tháng 2 năm 1941, bởi Dr. Glenn T. Seaborg, Edwin M. McMillan, J. W. Kennedy, and A. C. Wahl khi họ dùng hạt nhân deuteron bắn phá urani trong máy gia tốc ở Đại học California, Berkeley. Trong thí nghiệm năm 1940, neptuni-238 đã được tạo ra một cách trực tiếp từ việc bắn phá nhưng bị phân rã phát ra tia beta 2 ngày sau đó, và tạo ra nguyên tố 94. Seaborg ban đầu dự định đặt tên nguyên tố này là "plutium", nhưng sau đó ông nghĩ rằng nó nghe không hay bằng "plutonium." Ông chọn ký hiệu "Pu" như cách nói đùa, mà không cần chú ý vào bảng tuần hoàn. Các tên thay thế cũng đã được Seaborg và những người khác xét đến như "ultimium" hay "extremium" do các niềm tin sai lầm rằng họ đã tìm thấy nguyên tố có thể cuối cùng và nặng nhất trong bảng tuần hoàn.

Nghiên cứu thời kỳ đầu

Tính chất hóa học cơ bản của plutoni được phát hiện là giống với urani sau một vài tháng đầu nghiên cứu. Công đoạn này cho phép các nhà hóa học có thể xác định khối lượng nguyên tử của nguyên tố mới.

Vào tháng 11 năm 1943, một lượng plutoni trifluoride đã được khử để tạo ra mẫu plutoni kim loại đầu tiên: chỉ một vài microgram kim lại ở dạng hạt.

Các tính chất hạt nhân của plutoni-239 cũng đã được nghiên cứu sau đó; các nhà nghiên cứu phát hiện rằng khi một neutron va chạm vào nó, nó sẽ tách ra (phân hạch) bằng cách giải phóng các neutron và năng lượng. Các neutron mới này có thể tương tác với các nguyên tử plutoni-239 khác và quá trình cứ tiếp tục theo một phản ứng dây chuyền nhanh theo hàm mũ. Quá trình này có thể tạo ra một vụ nổ đủ lớn để phá hủy một thành phố nếu có đủ đồng vị được cô đọng để tạo thành một khối lượng tới hạn.

trái|nhỏ|Bề mặt của [[lò phản ứng B ở Cơ sở Hanford khi đang trong quá trình xây dựng—Đây là lò phản ứng sản xuất plutoni đầu tiên.]]

Lò phản ứng sản xuất đầu tiên tạo ra plutoni-239 là lò phản ứng than chì X-10. Nó đã được xây dựng năm 1943 ở cơ sở Oak Ridge mà sau đó trở thành Phòng thí nghiệm Oak Ridge.

Ngày 5 tháng 4 năm 1944, Emilio Segrè ở Los Alamos nhận được mẫu plutoni được tạo ra trong lò phản ứng ở Oak Ridge. Chỉ trong vòng vài chục ngày sau, ông phát hiện ra rằng plutoni từ lò phản ứng có nồng độ cao hơn đồng vị plutoni-240 được tạo ra từ máy gia tốc. Plutoni-240 có tốc độ phân hạch tự phát cao, làm tăng lượng neutron cơ bản của mẫu plutoni. Vũ khí plutoni loại súng được đặt tên theo mã là "Thin Man", phải bị hủy bỏ do số lượng các neutron sinh ra từ quá trình phân hạch tự phát tăng cao.

Toàn bộ thiết kế vũ khí plutoni ở Los Alamos đã được thay đổi nhanh chóng sau đó để tạo ra một mẫu có khả năng nổ phức tạp hơn mang tên "Fat Man". Là vũ khí nổ nên một chất rắn plutoni hình cầu đã được nén chặt với mật độ cao với các thấu kính nổ, nhưng cần thiết để dùng plutoni cho mục đích làm vũ khí. B, D và F là những lò phản ứng đầu tiên được xây dựng ở Hanford, và sáu lò phản ứng sản xuất plutoni đã được xây thêm sau đó cũng tại vị trí này.

Năm 2004, một hòm an toàn được phát hiện trong khi khai quật một máng bị chôn vùi ở Hanford nuclear site. Bên trong nó có nhiều vật gồm chai thủy tinh lớn chứa xi măng màu trắng loại này sau đó được xác định là mẫu plutoni cấp vũ khí cổ nhất còn tồn tại. Phân tích đồng vị tại Phòng thí nghiệm Pacific Northwest cho thấy rằng plutoni trong chai đã được sản xuất trong lò X-10 tại Oak Ridge trong năm 1944.

Bom Trinity và Fat Man

phải|nhỏ|Because of the presence of plutonium-240 in reactor-bred plutonium, the implosion design was developed for the "[[Fat Man" and "Trinity" weapons|alt=Two diagrams of weapon assembly. Top: "gun-type assembly method" – an elliptical shell encloses conventional chemical explosives on the left, whose detonation affects sub-critical pieced of uranium-235 on the right. Bottom: "implosion assembly method" – a spherical shell encloses eight high-explosive charges which upon detonation compress a plutonium charge in the center.]]

Quả bom nguyên tử thử nghiệm đầu tiên có tên gọi là "Trinity", được tiến hành ngày 16 tháng 7 năm 1945 ở gần Alamogordo, New Mexico, sử dụng plutoni làm nguyên liệu phân hạch. Khoảng 20% plutoni được dùng trong vũ khí Trinity đã trải qua quá trình phân hạch để tạo ra vụ nổ tương đương khoảng 20.000 tấn TNT.

Một thiết kế giống hệt được sử dụng trong quả bom "Fat Man" đã thả xuống Nagasaki, Nhật Bản, vào ngày 9 tháng 8 năm 1945, làm chết 70.000 người và làm bị thương 100,000. và ước tính có 170 tấn đã được sản xuất ở Nga. Mỗi năm có khoảng 20 tấn nguyên tố này được sản xuất đều đều ở dạng sản phẩm phụ của ngành công nghiệp điện hạt nhân. Có khoảng 1000 tấn plutoni có thể được dự trữ với hơn 200 tấn được lấy ra từ các vũ khí hạt nhân.

nhỏ|Thiết kế đề xuất về các hầm chứa chất thải ở [[khu chứa chất thải hạt nhân núi Yucca|alt=A drawing showing a main tubular tunnel, connected on its side to three other tubular tunnels, all embedded in sand-like matter.]] Khi chiến tranh Lạnh kết thúc, các kho vũ khí này trở thành tâm điểm của sự phổ biến hạt nhân. Ở Hoa Kỳ, một số plutoni được lấy ra từ các vũ khí hạt nhân đã được tháo gỡ và được làm nóng chảy để tạo thành những khúc thủy tinh plutoni oxide nặng 2 tấn. Các khúc này được bao bọc trong thép không gỉ và được trữ các nhiều càng tốt ở độ sâu 4 km dưới lòng đất trong các lỗ khoan và sẽ được lấp bằng bê tông.

Thí nghiệm y học

Trong và sau khi kết thúc chiến tranh thế giới thứ 2, các nhà khoa học làm việc trong dự án Manhattan và các dự án nghiên cứu các vũ khí hạt nhân khác đã tiến hành nghiên cứu những ảnh hưởng của plutoni trên các động vật trong phòng thí nghiêm và trên con người.

Đã có 18 thử nghiệm trên người được tiến hành với plutoni mà không có việc thông báo chấp thuận của đối tượng. Các thử nghiệm đã được sử dụng để tạo ra các công cụ chẩn đoán như để xác định mức độ hấp thu plutoni trong cơ thể người và cũng nhằm để phát triển các tiêu chuẩn an toàn khi làm việc với plutoni.

Vấn đề này ngày nay được xem là vi phạm nghiêm trọng y đức và Hippocratic Oath. More sympathetic commentators have noted that while it was definitely a breach in trust and ethics, "the effects of the plutonium injections were not as damaging to the subjects as the early news stories painted, nor were they so inconsequential as many scientists, then and now, believe."

Ứng dụng

Nhiên liệu oxide hỗn hợp

nhỏ|Dioxide plutonium trong máy phát điện đồng vị phóng xạ Nhiên liệu hạt nhân đã sử dụng từ các lò phản ứng nước nhẹ chứa Plutoni ở dạng hỗn hợp gồm plutoni-242, 240, 239 và 238. Hỗn hợp này không được làm giàu một cách đầy đủ để dùng cho các vũ khí hạt nhân, nhưng nó có thể được sử dụng làm nhiên liệu MOX. Bắt giữ neutron ngẫu nhiên làm cho một lượng plutoni-242 và 240 tăng theo thời gian Plutoni bị chiếu xạ trong lò phản ứng bởi các neutron "nhiệt" tốc độ chậm, vì thế sau chu kỳ thứ 2, Plutoni chỉ có thể được tiêu thụ bởi các lò phản ứng neutron nhanh. Nếu các lò phản ứng neutron nhanh không có, lượng Plutoni dư thường sẽ bị loại bỏ, và trở thành một loại chất thải hạt nhân có thành tố tồn tại lâu trong môi trường. Việc mong muốn tiêu thụ loại plutoni này và các nhiêu liệu siêu urani khác và làm giảm lượng phóng xạ trong chất thải là một trong những lý do khiến người ta phát triển các lò phản ứng neutron nhanh.

Công nghệ hóa học phổ biến nhất dùng để tái xử lý nhiên liệu hạt nhân đã qua sử dụng để tách plutoni và urani có thể được sử dụng để tạo ra một oxide hỗn hợp là "nhiên liệu MOX" cho một số lò phản ứng hạt nhân. Plutonii cấp vũ khí có thể cần được cho thêm vào hỗn hợp nhiêu liệu này. Nhiên liệu MOX được dùng trong các lò phản ứng nước nhẹ và chiếm khoảng 60 kg plutoni trên 1 tấn nhiên liệu; sau 4 năm, 3/4 lượng plutoni bị tiêu thụ (chuyển thành các nguyên tố khác). Tháng 9 năm 2000, Hoa Kỳ và Nga ký kết một thỏa thuận về loại bỏ và quản lý plutoni, theo đó, mỗi bên đồng ý loại bỏ 34 tấn plutoni cấp vũ khí. Bộ Năng lượng Hoa Kỳ lên kế hoạch loại bỏ 34 tấn plutoni cấp vũ khí ở Hoa Kỳ vào cuối năm 2019 bằng cách chuyển plutoni thành nhiên liệu MOX dùng cho các lò phản ứng hạt nhân thương mại. Khi galli chiếm 1% về khối lượng trong các hợp kim plutoni cấp vũ khí thì nó có khả năng gây cản trở việc vận hành lâu dài các lò phản ứng nước nhẹ.

Plutoni được thu hồi từ các nhiên liệu lò phản ứng hạt nhân đã qua sử dụng đặt ra một mối nguy hiểm phổ biến vũ khí hạt nhân ở mức ít hơn, vì sự ô nhiễm nhiều hơn với các đồng vị không phân hạch như plutoni-240 và plutoni-242. Việc tách các đồng vị này là không khả thi. Một lò phản ứng chuyên dụng vận hành dựa trên việc đốt nhiên liệu ở mức rất thấp nhìn chung cần phải tạo ra vật liệu thích hợp cho việc sử dụng chúng có hiệu quả trong các vũ khí hạt nhân. Trong khi plutoni cấp vũ khí được định nghĩa là có chứa ít nhất 92% plutoni-239, thì Hoa Kỳ đã quản lý để làm thiết bị nổ dưới 20Kt (kilo tấn) dùng plutoni được tin là chỉ chứa khoảng 85% plutoni-239, còn được gọi là plutoni 'cấp nhiên liệu'.

241Am gần đây đã được đề nghị dùng làm chất biến tính trong các thanh nhiên liệu hạt nhân dùng plutoni nhằm hạn chế khả năng phát tán hạt nhân của nó.

👁️ 2 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Plutoni** là một nguyên tố hóa học hiếm, có tính phóng xạ cao với ký hiệu hóa học **Pu** và số nguyên tử 94. Nó là một kim loại thuộc nhóm actini với bề ngoài
**Plutoni(IV) Oxide** là một hợp chất vô cơ có thành phần gồm hai nguyên tố plutoni và oxy, với công thức hóa học được quy định là **PuO2**. Hợp chất tồn tại dưới dạng một
**Plutoni(IV) nitrat** là một hợp chất vô cơ, là muối của plutoni và acid nitric có công thức hóa học **Pu(NO3)4**. Hợp chất này dễ tan trong nước và tạo thành các tinh thể màu
**Plutoni(IV) sulfat** là một hợp chất vô cơ của plutoni và acid sulfuric có công thức hóa học **Pu(SO4)2** – tinh thể màu đỏ. ## Tính chất hóa học Với sulfat kim loại kiềm, nó
**Plutoni-239** là một đồng vị của plutoni, ký hiệu \mathrm
**Fat Man** (tạm dịch: "Gã béo"; còn được gọi là **Mark III**) là mật danh của quả bom hạt nhân mà Hoa Kỳ đã thả xuống thành phố Nagasaki (Nhật Bản) vào ngày 9 tháng
thumb|Những thùng chất thải phóng xạ [[Chất thải cấp thấp|cấp thấp của TINT]] **Chất thải phóng xạ** là chất thải chứa vật liệu phóng xạ. Chất thải phóng xạ thường là sản phẩm phụ của
**Dự án Manhattan** () là một dự án nghiên cứu và phát triển bom nguyên tử đầu tiên trong Thế chiến II, chủ yếu do Hoa Kỳ thực hiện với sự giúp đỡ của Anh
nhỏ|Một đĩa kim loại [[Đồng vị của californi|californi-249 (10 mg). Đĩa có đường kính gấp đôi độ dày của một đầu kim thông thường (1 mm).]] Trong hóa học, **họ actini** (tiếng Anh: **actinide** hoặc
"**Little Boy**" ("cậu bé") là mật danh của quả bom nguyên tử được ném xuống thành phố Hiroshima (Nhật Bản) vào ngày 6 tháng 8 năm 1945 trong Chiến tranh thế giới thứ hai. Đây
thumb|[[Bảng tuần hoàn]] **Nguyên tố hóa học**, thường được gọi đơn giản là **nguyên tố**, là một chất hóa học tinh khiết, bao gồm một kiểu nguyên tử, được phân biệt bởi số hiệu nguyên
**Nước nặng** là nước chứa một tỷ lệ đồng vị đơteri (deuterium) cao hơn thông thường, hoặc là **đơteri oxide**, D2O hay ²H2O, hoặc là **đơteri proti oxide**, HDO hay H¹H²O. Các tính chất vật
**Phòng thí nghiệm Los Alamos**, còn được gọi là **Dự án Y**, là một phòng thí nghiệm bí mật được thành lập bởi Dự án Manhattan và do Đại học California thực hiện trong Thế
nhỏ|phải|[[Nhà máy điện hạt nhân Ikata, lò phản ứng nước áp lực làm lạnh bằng chất lỏng trao đổi nhiệt thứ cấp với đại dương.]] nhỏ|phải|Ba loại tàu năng lượng hạt nhân, từ trên xuống
**Curium** là một nguyên tố hóa học nằm trong bảng tuần hoàn, có tên Latinh là **_Curium_**, ký hiệu nguyên tử **Cm**, thuộc nhóm actini, nằm ở vị trí 96. Là một nguyên tố có
**New Horizons** là phi thuyền thăm dò không gian tự động được cơ quan hàng không vũ trụ NASA phóng lên vũ trụ vào năm 2006. Đây cũng là phi thuyền đầu tiên của nhân
**Urani** hay **uranium** là một nguyên tố hóa học kim loại màu trắng thuộc nhóm Actini, có số nguyên tử là 92 trong bảng tuần hoàn, được ký hiệu là **U**. Trong một thời gian
**Haroutune Krikor Daghlian, Jr.** thường gọi là _Harry K. Daghlian, Jr._, (04/05/1921 - 15/09/1945) là một nhà vật lý, làm việc ở Dự án Manhattan thực hiện chế tạo bom nguyên tử trong Thế chiến
**Chu trình nhiên liệu hạt nhân**, còn được gọi là **chuỗi nhiên liệu hạt nhân**, là sự tiến triển của nhiên liệu hạt nhân qua một loạt các giai đoạn khác nhau. Nó bao gồm
**Americi** là một nguyên tố tổng hợp có ký hiệu **Am** và số nguyên tử 95. Một nguyên tố kim loại phóng xạ, americi là một actinide đã được Glenn T. Seaborg tách vào năm
**Trinity** là mật danh của vụ thử vũ khí hạt nhân đầu tiên do Lục quân Hoa Kỳ tiến hành vào ngày 15 tháng 7 năm 1945, một phần của dự án Manhattan. Địa điểm
**Tái chế hạt nhân** là sự tách biệt hóa học của các sản phẩm phân hạch và urani không sử dụng khỏi nhiên liệu hạt nhân đã qua sử dụng. Ban đầu, quá trình tái
nhỏ|Một [[neutron được bắn vào một hạt nhân urani-235, biến nó thành một hạt nhân urani-236 với năng lượng kích thích được cung cấp bởi động năng của neutron cộng với các lực liên kết
|- ! scope="row" |Chỉ dẫn R | , , |- ! scope="row" |Chỉ dẫn S | , , , |- ! scope="row" |Điểm bắt lửa | không rõ |} **Urani(IV) Oxide** (công thức hóa học:
[[Tập_tin:Periodic_table,_good_SVG.svg|phải|nhỏ|432x432px| ]] **Nguyên tố tổng hợp** bao gồm 24 nguyên tố hóa học không xuất hiện tự nhiên trên Trái Đất: chúng được tạo ra bởi sự điều khiển của con người đối với các
thumb|Quả cầu [[plutoni bao quanh bằng các khối carbide wolfram phản xạ neutron trong thí nghiệm năm 1945 ở Phòng thí nghiệm Los Alamos]] thumb|Phân hạch của [[Urani-235 dưới tác động của neutron, cho ra
**Urani tái chế** (**RepU**) là urani được thu hồi từ tái chế hạt nhân - quá trình được thực hiện thương mại ở Pháp, Anh và Nhật Bản và bởi các chương trình sản xuất
**Gali** (bắt nguồn từ từ tiếng Pháp _gallium_ (/ɡaljɔm/)), còn được viết là **ga-li**, hay thép, làm cho chúng trở nên rất giòn. Ngoài ra, gali kim loại cũng dễ dàng tạo ra hợp kim
là một trận động đất mạnh 9,0 MW ngoài khơi Nhật Bản xảy ra lúc 05:46 UTC (14:46 giờ địa phương) vào ngày 11 tháng 3 năm 2011. Trận động đất có vị trí chấn
**Neptuni** (tên Latinh: **Neptunium**) là một nguyên tố hóa học ký hiệu **Np**, có số nguyên tử 93 trong bảng tuần hoàn, được đặt tên theo tên của Sao Hải Vương (_Neptune_). Neptuni là nguyên
**Lò phản ứng hạt nhân** là một thiết bị được dùng để khởi động, duy trì và kiểm soát phản ứng hạt nhân. Trong thực tế có hai loại lò chính. # Lò phản ứng
Trong hóa học, các yếu tố siêu urani là các nguyên tố hóa học với số nguyên tử lớn hơn 92 (số nguyên tử của urani). Không nguyên tố nào trong số những nguyên tố
**Fermi** hay **fecmi** là một nguyên tố kim loại tổng hợp thuộc nhóm actini có tính phóng xạ cao, có ký hiệu **Fm** và số nguyên tử là 100. Fermi được tạo ra bằng cách
**Urani-238** (**238U** hay **U-238**) là đồng vị phổ biến nhất của urani có trong tự nhiên, chiếm khoảng 99% khối lượng urani. Không giống như urani-235, nó không thể phân hạch, nghĩa là nó không
**Neptuni(IV) Oxide**, còn được gọi với cái tên khác là _neptuni dioxide_, là một chất rắn hình lục giác màu xanh ôliu. Hợp chất này có khối lượng riêng lớn và công thức hóa học
**Glenn Theodore Seaborg** (1912-1999) là nhà vật lý hạt nhân người Mỹ. Ông cùng với Edwin McMillan trở thành hai nhà khoa học Mỹ đoạt Giải Nobel Hóa học năm 1951 nhờ những phát hiện
**Đioxy điflorua** là một hợp chất của hai nguyên tố flo và oxy, với công thức phân tử được quy định là O2F2. Hợp chất này có thể tồn tại dưới dạng chất rắn màu
**Shikishima PLH-31** là một tàu tuần tra và là chiếc dẫn đầu của lớp Shikishima của Lực lượng Bảo vệ bờ biển Nhật Bản (JCG). Tàu được khởi đóng bởi Tập đoàn IHI, Tokyo. Tàu
**Uranium-233** là một đồng vị phân hạch của urani được tạo ra từ thorium-232 như một phần của chu trình nhiên liệu thorium. Uranium-233 đã được điều tra để sử dụng trong vũ khí hạt
**Nhà máy điện hạt nhân Obninsk** hay **Nhà máy điện hạt nhân đầu tiên** — là nhà máy điện nguyên tử được xây dựng tại thành phố Obninsk thuộc tỉnh Kaluga, Nga. Đây là nhà
là một loại bom khinh khí cầu không người lái được Nhật Bản chế tạo để tấn công phá hoại Hoa Kỳ trong Chiến tranh Thế giới thứ hai. Loại vũ khí này bao gồm
**Samari(III) bromide** là một hợp chất vô cơ, một muối của samari và acid bromhydric có công thức **SmBr3**, tinh thể màu vàng, hòa tan trong nước, tạo thành tinh thể ngậm nước. ## Điều
**Khủng bố hạt nhân** đề cập đến bất kỳ cá nhân hoặc nhóm người kích nổ vũ khí hạt nhân như một hành động khủng bố (có nghĩa là sử dụng bạo lực bất hợp
**Sao Diêm Vương** (**Pluto**) hay **Diêm Vương tinh** (định danh hành tinh vi hình: **134340 Pluto**) là hành tinh lùn nặng thứ hai đã được biết trong Hệ Mặt Trời (sau Eris) và là vật
**Xenon** là một nguyên tố hóa học trong bảng tuần hoàn có ký hiệu **Xe** và số nguyên tử bằng 54. Là một khí hiếm không màu, không mùi và rất nặng, xenon có trong
**Beryli**, **berili** hay thường được gọi ngắn là **beri** là một nguyên tố hóa học trong bảng tuần hoàn có ký hiệu **Be** và số nguyên tử bằng 4, nguyên tử khối bằng 9. Là
Bảng tuần hoàn tiêu chuẩn 18 cột. Màu sắc thể hiện các nhóm [[nguyên tố hoá học của nguyên tử khác nhau và tính chất hóa học trong từng nhóm (cột)]] **Bảng tuần hoàn** (tên
Bức ảnh buồng mây của C.D. Anderson của positron đầu tiên từng được xác định. Một tấm chì 6 mm ngăn cách nửa trên của buồng với nửa dưới. Positron phải đến từ bên dưới
__NOTOC__ Trang này liệt kê những sự kiện quan trọng vào **tháng 5 năm 2005**. ## Thứ hai, ngày 2 tháng 5 *Sau khủng bố tại Cairo vào thứ bảy, khoảng chừng 200 người bị
nhỏ|Vụ thử bom nguyên tử 14 kiloton tại [[Nevada, Hoa Kỳ.]] **Hiệp ước không phổ biến vũ khí hạt nhân** là một hiệp ước quốc tế nhằm mục đích hạn chế việc sở hữu các