✨Caesi

Caesi

Caesi (hay còn gọi là Xê-si, tiếng Anh: cesium, tiếng Latinh: "caesius") là một nguyên tố hóa học trong bảng tuần hoàn có ký hiệu Cs và số nguyên tử bằng 55. Nó là một kim loại kiềm mềm, màu bạc, và với điểm nóng chảy là khiến cho nó trở thành một trong các kim loại ở dạng lỏng tại hay gần nhiệt độ phòng. Caesi là một kim loại kiềm, có tính chất vật lý và hóa học giống với rubidi, kali; là kim loại hoạt động mạnh, có khả năng tự cháy, phản ứng với nước thậm chí ở nhiệt độ . Nó là nguyên tố có độ âm điện thấp thứ hai sau franci, và chỉ có một đồng vị bền là caesi-133. Caesi được khai thác trong mỏ chủ yếu từ khoáng chất pollucit, trong khi các đồng vị phóng xạ khác, đặc biệt là caesi-137 - một sản phẩm phân hạch hạt nhân, được tách ra từ chất thải của các lò phản ứng hạt nhân.

Nhà hóa học người Đức Robert Bunsen và nhà vật lý học Gustav Robert Kirchhoff đã phát hiện ra caesi năm 1860 bằng một phương pháp mới được phát triển là "quang phổ phát xạ nung bằng ngọn lửa". Các ứng dụng quy mô nhỏ đầu tiên của caesi là "chất bắt giữ" trong ống chân không và trong tế bào quang điện. Năm 1967, dựa trên nguyên lý của Einstein về sự không đổi của tốc độ ánh sáng trong vũ trụ, Ủy ban Quốc tế về Cân đo đã tách biệt hệ đếm 2 sóng riêng biệt từ quang phổ phát xạ của caesi-133 để đồng định nghĩa giây và mét trong hệ SI. Từ đó caesi được ứng dụng rộng rãi trong các đồng hồ nguyên tử độ chính xác cao.

Từ thập niên 1990, ứng dụng của nguyên tố này trên quy mô lớn nhất là caesi format trong dung dịch khoan. Nó có nhiều ứng dụng trong kỹ thuật điện, điện tử, và hóa học. Đồng vị phóng xạ caesi-137 có chu kỳ bán rã khoảng 30 năm và được sử dụng trong y học, thiết bị đo công nghiệp và thủy văn học. Mặc dù nguyên tố chỉ có độ độc tính trung bình, nó là vật liệu nguy hại ở dạng kim loại và các đồng vị phóng xạ của nó ảnh hưởng đến sức khỏe cao nếu được phóng thích ra môi trường.

Đặc trưng

Tính chất vật lý

thumb|Caesi-133 độ tinh khiết cao được bảo quản trong [[argon|alt= Y-shaped yellowish crystal in glass ampoule, looking like the branch of a pine tree]] Caesi là một kim loại có màu nhạt rất dẻo, độ cứng thấp và rất mềm (độ cứng của nó là 0,2, là nguyên tố mềm nhất), nó chuyển sang màu tối khi có mặt oxy ở dạng vết. Caesi có điểm nóng chảy ở , là một trong ít các kim loại nguyên tố ở dạng lỏng trong điều kiện gần nhiệt độ phòng. Thủy ngân là kim loại nguyên tố duy nhất có điểm nóng chảy thấp hơn caesi. Các hợp chất của nó cháy cho ngọn lửa màu xanh dương

thumb|Mẫu caesi được dùng trong giảng dạy Caesi tạo hợp kim với các kim loại kiềm khác, cũng như với vàng, và tạo hỗn hống với thủy ngân. Ở nhiệt độ dưới , nó không tạo hợp kim với cobalt, sắt, molybden, nickel, platin, tantal hay wolfram. Nó tạo thành các hợp chất đa kim với antimon, gali, indi và thori, có tính cảm quang. Một vài hỗn hống đã được nghiên cứu như: có màu đen tạo ra ánh kim màu tía, trong khi CsHg có màu vàng ánh bạc.

Tính chất hóa học

Kim loại caesi có độ hoạt động mạnh và tự bốc cháy. Nó phản ứng nổ với nước thậm chí ở nhiệt độ thấp, mạnh hơn các kim loại khác trong nhóm 1. Caesi có thể được chứa trong ống thủy tinh borosilicat được hút chân không. Với một lượng hơn , caesi được vận chuyển trong các thùng chứa bằng thép không gỉ được bịt kín. Là một kim loại kiềm, trạng thái oxy hóa phổ biến của nó là +1. Có một số khác biệt nhỏ từ thực tế rằng nó khối lượng nguyên tử lớn hơn và độ dương điện lớn hơn so với các kim loại kiềm khác. Caesi là nguyên tố hóa học có độ dương điện cao nhất. acetat, carbonat, halide, oxide, nitrat, và sulfat đều tan trong nước. Các muối kép thường ít tan hơn, và tính tan thấp của caesi nhôm sulfat được khai thác để lấy Cs từ quặng của nó. Muối kép với antimon (như ), bismuth, cadmi, đồng, sắt, và chì cũng ít tan. CsOH thông thường được coi là "base mạnh nhất", phản ánh tính hút tương đối yếu giữa ion lớn Cs+ và OH;

Phức

Giống như các cation kim loại, Cs+ tạo phức với các base Lewis trong dung dịch. Do có kích thước lớn, Cs+ thường có số phối trí lớn hơn 6, là điển hình cho các cation kim loại kiềm nhẹ hơn. Xu hướng này thể hiện rõ bởi số phối trí 9 trong CsCl, so với mẫu halit khi các kim loại kiềm khác liên kết với chlorine. Nó có số phối trí cao và mềm (khuynh hướng tạo thành liên kết cộng hóa trị) là điểm cơ bản để tách Cs+ ra khỏi các cation khác, như xử lý chất thải hạt nhân khi 137Cs+ được tác ra khỏi một lượng lớn K+ không phóng xạ.

Halide

thumb|upright|Sợi caesi halide đơn nguyên tử phát triển bên trong [[ống nano carbon thành hai lớp (Ảnh TEM).]] Caesi fluoride (CsF) là một chất rắn màu trắng háo nước được sử dụng rộng rãi trong hóa học carbon-fluor làm nguồn cung cấp anion fluoride. Caesi fluoride có cấu trúc giống halit, nghĩa là các ion Cs+ và F xếp trong một hình lập phương kết chặt giống như Na+ và Cl trong natri chloride.

Oxide

thumb|ô mạng

Caesi tạo nhiều hợp chất hai cấu tử với oxy hơn các kim loại kiềm khác. Khi cháy trong không khí, superoxide là sản phẩm chính. Caesi oxide () "bình thường" tạo các tinh thể hệ sáu phương có màu vàng cam, và chỉ có oxide loại anti-. Nó hóa hơi ở , và phân hủy thành kim loại caesi và peroxide ở nhiệt độ trên . Ngoài các superoxide và ozonide , nhiều suboxide có màu sáng cũng được nghiên cứu, như , , , (lục sẫm), CsO, , hay . Chất có thể được nung trong chân không để tạo ra . Nguyên tố này phổ biến thứ 45 trong số các nguyên tố và thứ 36 trong nhóm kim loại. Tuy vậy, nó phổ biến hơn các nguyên tố như antimon, cadmi, thiếc và wolfram, và lớn gấp 20 lần so với thủy ngân hoặc bạc, nhưng chỉ hơn 3,3% so với rubidi là loại cộng sinh với nó. Trong sự kết tinh phân đoạn mắc ma, caesi được tập trung ở pha lỏng và kết tinh sau cùng. Do đó, các mỏ caesi lớn nhất là các thân quặng pecmatit được hình thành từ quá trình làm giàu quặng này. Do caesi không thể thay thế kali cũng như rubidi, các khoáng vật kiềm hình thành do quá trình bay hơi như sylvit (KCl) và cacnallit () chỉ có thể chứa 0,002% caesi. Từ đó, Cs được tìm thấy trong ít khoáng vật. Một phần caesi có thể được tìm thấy trong beryl () và avogadrit (), lên đến 15% Cs2O trong khoáng pezzottait (Cs(Be2Li)Al2Si6O18), lên đến 8,4% Cs2O trong londonit (), và ít phổ biến hơn trong rhodizit.

Một trong những nguồn tài nguyên giàu caesi và quan trọng nhất trên thế giới là mỏ Tanco ở Bernic Lake, Manitoba, Canada. Mỏ được ước tính chứa 350.000 tấn quặng pollucit, chiếm 2/3 trữ lượng trên thế giới. Mặc dù cân bằng hàm lượng caesi trong pollucit là 42,6%, các mẫu pollucit tinh khiết từ mỏ này có thể chỉ chiếm khoảng 34% caesi, trong khi hàm lượng trung bình 24wt%. Mỏ pecmatit Bikita ở Zimbabwe được khai thác để lấy petalit, nhưng nó chỉ chứa một lượng đáng kể pollucit. Một lượng pollucit khá phong phú cũng được khai thác ở sa mạc Karibib, Namibia. cũng như trong các vụ nổ siêu tân tinh (quá trình R). Mặc dù có nhiều đồng vị như vậy, song caesi chỉ có 1 đồng vị ổn định trong tự nhiên là Cs133 có 78 neutron. Mặc dù nó có spin hạt nhân lớn (+), các nghiên cứu cộng hưởng từ hạt nhân có thể được tiến hành trên đồng vị này ở tần số cộng hưởng 11,7 MHz. thumb|Phân rã của caesi-137|alt=Biểu đồ thể hiện năng lượng phân rã của cesium-137 (nuclear spin: I=+, chu kỳ bán rã 30 năm). Với xác suất 94,6%, nó phân rã beta phát ra 512 keV thành bari-137m (I=11/2-, t=2.55min); sản phần này sau đó phân rã gamma phát ra 662 keV với xác suất 85.1% thành bari-137 (I=+). Ngoài ra, caesi-137 có thể phân rã trực tiếp thành bari-137 khi phát xạ beta với xác xuất 0,4%.

135Cs có chu kỳ bán rã rất dài khoảng 2,3 triệu năm, dài nhất trong tất cả các đồng vị của caesi. 137Cs và 134Cs có chu kỳ bán rã lần lượt là 30 và 2 năm.137Cs phân rã beta tạo thành đồng vị 137mBa có thời gian tồn tại ngắn, và sau đó thành bari không phóng xạ, trong khi 134Cs chuyển trực tiếp thành 134Ba. Các đồng vị có số khối 129, 131, 132 và 136 có chu kỳ bán rã từ một ngày đến hai tuần, trong khi hầu hết các đồng vị còn lại có chu kỳ bán rã từ vài giây đến một giây. Có ít nhất 21 đồng phân hạt nhân ở trạng thái kích thích. Ngoài 134mCs (có chu kỳ bán rã dưới 3 giờ), tất cả đều rất không bền và phân rã có chu kỳ vài phút hay ngắn hơn.

Đồng vị 135Cs là một trong những sản phẩm phân hạch hạt nhân của urani có thời gian tồn tại lâu, nó được tạo ra trong các lò phản ứng hạt nhân. Tuy nhiên, sản lượng sản phẩm phân hạch của nó bị giảm trong hầu hết các lò phản ứng do nguyên tử trước đó của nó, 135Xe, là một neutron cực kỳ động và chuyển hóa thường xuyên thành 136Xe bền trước khi phân rã thành 135Cs.

Do phân rã beta của nó (thành 137mBa), 137Cs là một nguồn phát phóng xạ gamma mạnh. Chu kỳ bán rã của làm nó trở thành một sản phẩm phân hạch có thời gian tồn tại trung bình cùng với 90Sr—cả hai góp phần phát ra phóng xạ của các nhiên liệu hạt nhân đã qua sử dụng sau nhiều năm làm lạnh cho đến hàng trăm năm sau khi sử dụng. Ví dụ, 137Cs cùng với 90Sr hiện tạo ra một nguồn phóng xạ lớn nhất ở khu vực xung quanh thảm họa Chernobyl. Không khả thi để xử lý 137Cs bằng bắt neutron (do tỉ lệ bắt giữ thấp) và kết quả là nó phải được để cho phân rã.

Hầu như tất cả caesi được tạo ra từ phân hạch hạt nhân đều từ phân rã beta của các sản phẩm phân hạch giàu neutron hơn, trải qua nhiều đồng vị iod và xenon khác nhau. Do iod và xenon có bay hơi và có thể phân tán qua nhiên liệu hạt nhân hoặc không khí, caesi phóng xạ thường được tạo ra rất xa nguồn phân hạch. Với vụ thử vũ khí hạt nhân khoảng năm 1945, 137Cs đã được giải phóng vào khí quyển và sau đó vào bề mặt Trái Đất ở dạng bụi phóng xạ.

Hòa tan acid, đá pollucit silicat được hòa tan trong các acid mạnh như acid hydrochloric (HCl), acid sulfuric (), acid hydrobromic (HBr), hay acid hydrofluoric (HF). Với acid hydrochloric sẽ tạo ra hỗn hợp chloride tan và vác muối kép chloride không tan của caesi được kết tủa ở dạng caesi antimon chloride (), caesi iod chloride (), hay caesi hexachlorocerat (). sau khi tách, muối kép đã được kết tủa ở dạng tinh khiết được phân hủy, và thu được CsCl tinh khiết sau khi cho nước bốc hơi. Phương pháp sử dụng acid sulfuric cho ra muối kép không tan trực tiếp ở dạng phèn caesi (). Nhôm sulfat trong dung dịch được chuyển thành nhôm oxide không tan bằng cách nung phèn với carbon, và sản phẩm được thủy luyện với nước để tạo ra dung dịch . Các hợp chất của caesi được sản xuất ở quy mô nhỏ ban đầu là caesi chloride và các nitrat của nó. : + 2 → 2 + 2 +

Giá caesi kim loại tinh khiết 99,8% năm 2009 khoảng 10 USD một gram (280 USD một ounce), nhưng các hợp chất của nó rẻ hơn đáng kể. Việc xác định nó dựa trên các vạch màu lam nhạt trong quang phổ của nó và nó là nguyên tố đầu tiên được phát hiện nhờ phân tích quang phổ, chỉ một năm sau khi Bunsen và Kirchhoff phát minh ra kính quang phổ.

Để thu được một mẫu caesi tinh khiết, 44.000 lit nước khoáng đã được cho bốc hơi tạo ra dung dịch muối. Các kim loại kiềm thổ được kết tủa ở dạng sulfat hoặc oxalat, để lại các kim loại kiềm trong dung dịch. Sau khi chuyển thành các nitrat và tách ra bằng ethanol thì thu được một hỗn hợp không chứa natri. Từ hỗn hợp này, lithi được kết tũa bằng amoni carbonat. Kali, rubidi và caesi tạo thành các muối không tan với acid chloroplatinic, nhưng các muối này có độ hòa tan hơi khác nhau trong nước nóng. Do đó, caesi và rubidi hexachloroplatinat ((Cs,Rb)2PtCl6) ít tan hơn có thể thu được từ kết tinh phân đoạn. Sau khi khử hexachloroplatinat bằng hydro, caesi và rubidi có thể được tách ra dựa trên tính tan khác nhau của dạng carbonat của chúng trong cồn. Quá trình này tạo ra rubidi chloride và caesi chloride từ 44.000 lit nước khoáng ban đầu.

Hai nhà khoa học đã sử dụng caesi chloride này để tính toán khối lượng nguyên tử của nguyên tố mới là 123,35 (so với con số hiện tại được chấp nhận là 132,9). Việc điện phân dung dịch chloride với anot thủy ngân tạo ra hỗn hống caesi sẵn sàng phân hủy trong các điều kiện dung dịch.

Trong lịch sử, ứng dụng quan trọng nhất của caesi là trong nghiên cứu và phát triển, chủ yếu là lĩnh vực điện và hóa. Rất ít ứng dụng phát triển trên caesi mãi cho đến thập niên 1920, khi nó được sử dụng trong các ống chân không radio. Nó có hai chức năng; là một getter, nó loại bỏ oxy thừa sau khi chế tạo, và làm chất áo trên cathode được nung nóng, nó làm tăng độ dẫn điện. Caesi không được công nhận là một kim loại trong công nghiệp hiệu suất cao mãi cho đến thập niên 1950. Những ứng dụng của caesi không phóng xạ như tế bào năng lượng, photomultiplier, các bộ phận quang học của kính hồng ngoại, chất xúc tác cho một số phản ứng hữu cơ, các tinh thể dùng trong máy đếm nhấp nháy, và trong máy phát điện MHD. Caesi cũng và vẫn được sử dụng làm nguồn cung cấp các ion dương trong quang phổ khối ion thứ cấp (secondary ion mass spectrometry).

Từ năm 1967, Hệ đo lường quốc tế xác định giây dựa trên tính chất của caesi. Hệ SI định nghĩa một giây là 9.192.631.770 chu kỳ phân rã tương ứng với sự chuyển hai mức năng lượng từ trạng thái ổn định của nguyên tử caesi-133.

Ứng dụng

Thăm dò dầu khí

Có lẽ ứng dụng phổ biến nhất của caesi hiện nay là trong các dung dịch khoan dựa trên caesi format (Cs(HCOO)) trong công nghiệp khai thác dầu mỏ. cùng với tính tương đối lành tính của các hợp chất Cs, làm giảm các yêu cầu đối với các chất rắn huyền phù tỷ trọng cao và có độc trong dung dịch khoan, làm cho nó có một số ưu thế đáng kể về mặt công nghệ, môi trường và công trình. Caesi format có thể được trộn với kali và natri format để giảm tỉ trọng dung dịch xuống bằng với tỉ trọng của nước (1.0 g·cm−3). Hơn nữa, nó có thể tự phân hủy và tái sử dụng, và có thể được tái chế, đây là một điểm quan trọng vì chi phí cao của nó (khoảng $4.000 một Barrel năm 2001). Các format kiềm thì an toàn trong vận chuyển và không phá hỏng thành hệ hoặc các kim loại chìm xuống lỗ khoan như những muối tỉ trọng cao ăn mòn thay thế (như dung dịch kẽm bromide ); chúng cũng ít cần làm sạch hơn và giảm chi phí đổ thải. Các đồng hồ này được cải tiến theo định kỳ cứ mỗi nửa thế kỷ, và hình thành các tiêu chuẩn tuân thủ thời gian và đo đạc tần số, và được xem là "đơn vị chính xác nhất mà còn người từng đạt được."

Năng lượng điện và điện tử

Các máy phát điện ion nhiệt bằng hơi caesi là các thiết bị năng lượng thấp chuyển năng lượng nhiệt thành năng lượng điện. Trong bộ chuyển ống chân không hai điện cực, nó trung hòa điện tích trong khoảng không hình thành ở gần ca-tốt, và do vậy nó tăng cường dòng điện.

Caesi cũng có những đặc điểm quan trọng do tính quang điện của nó, theo đó năng lượng ánh sáng được chuyển thành dòng điện. Nó được dùng trong các tế bào quang điện do các ca-tốt gốc caesi như hợp chất kim loại , có người điện thế thấp để phát ra electron. Các thiết bị quang điện sử dụng caesi như các thiết bị nhận dạng ký tự quang học, các đèn nhân quang điện, và các ống video camera. Tuy nhiên, germani, rubidi, seleni, silic, teluri, và nhiều nguyên tố khác có thể thay thế caesi trong các loại vật liệu cảm quang. Nguyên tố cũng được dùng làm chuẩn nội trong quang phổ học. Giống các kim loại kiềm khác, caesi có ái lực mạnh với oxy và được sử dụng làm "thắng" (phanh) trong ống chân không. Các ứng dụng khác ở dạng kim loại như laser năng lượng cao, đèn huỳnh quang, và chỉnh lưu. Công nghệ này được ứng dụng chủ yếu trong tách các virus, bào quan và các phần phân đoạn của tế bào, và các acid nucleic từ các mẫu sinh học.

Hóa học và y học

thumb|alt=Some fine white powder on a laboratory watch glass|Bột caesi chloride Các ứng dụng về hóa của caesi tương đối ít. Doping với các hợp chất Caesi được dùng để nâng cao hiệu quả một số chất xúc tác trong sản xuất chất hóa học như các monome acid acrylic, anthraquinone, ethylen oxide, methanol, anhydride phthalic, styren, methyl methacrylat, và nhiều olefin khác nhau. Nó cũng được sử dụng trong chuyển đổi xúc tác sulfur dioxide thành sulfur trioxide trong sản xuất acid sulfuric. Các muối Caesi đôi khi thay các muối natri và kali trong tổng hợp hữu cơ như chất vòng hóa, ester hóa, và polymer hóa. Nó cũng được dùng trong dosimetry bức xạ thermoluminescent (TLD): Khi tiếp xúc với bức xạ, nó thu được những khuyết tật tinh thể do đó khi được nung nóng, chuyển thành phát ra ánh sáng thích hợp với liều nhậu được. Do vậy, việc đo đạc xung ánh sáng bằng đèn nhân quang điện có thể cho phép liều bức xạ tích tụ để có thể lượng hóa được.

Hạt nhân và đồng vị của nó

Caesi-137 là một đồng vị phóng xạ rất phổ biến được sử dụng như nguồn phát tia gamma trong các ứng dụng công nghiệp. Ưu điểm của nó là có chu kỳ bán rã gần 30 năm, nó có trong chu trình nhiên liệu hạt nhân, và có 137Ba đồng vị bền cuối. Khả năng hòa tan lớn trong nước là một bất lợi làm cho nó không thích hợp với large pool irradiators trong việc cung ứng cho thực phẩm và dược phẩm. Nó được dùng trong nông nghiệp, điều trị ung thư, và khử trùng vi sinh trong thực phẩm, bùn cống, và thiết bị phẫu thuật. Các đồng vị phóng xạ của caesi trong các thiết bị xạ trị được dùng trong lĩnh vực y học để trị các loại ung thư nhất định, nhưng những thay thế tốt hơn trong trường hợp khẩn cấp và sử dụng caesi chloride tan trong nước trong các nguồn có thể tạo ra sự ô nhiễm trên diện rộng, từ từ làm cho các caesi này không thể sử dụng được nữa. Caesi-137 đã được sử dụng trong nhiều thiết bị đo đạc công nghiệp, như đo độ ẩm, tỉ trọng, thủy chuẩn, và đo bề dày. Nó cũng được sử dụng trong các thiết bị đo địa vật lý giếng khoan để đo mật độ electron của các thành hệ đá, giá trị này tương tự như mật độ khối của thành hệ.

Đồng vị 137 cũng được sử dụng trong các nghiên cứu thủy văn học tương tự như sử dụng triti. Caesi-137 là đồng vị con trong phản ứng phân hạch hạt nhân. Với việc bắt đầu thử nghiệm hạt nhân khoảng năm 1945, và tiếp tục những vụ thử sau đó trong suốt giữa thập niên 1980, caesi-137 đã được giải phóng vào không khí và nó dễ dàng được hấp thụ trong các dung dịch. Việc biết sự thay đổi theo năm trong khoảng thời gian đó cho phép thiết lập mối quan hệ giữa đất và các lớp trầm tích. Caesi-134, và các đồng vị ít phổ biến hơn là caesi-135, cũng được sử dụng trong thủy văn bằng cách đo lượng caesi đầu ra của công nghiệp hạt nhân. Trong khi chúng ít phổ biến hơn cả caesi-133 hay caesi-137, các đồng vị này có ưu điểm là được tạo ra độc lập từ các nguồn nhân tạo.

Ứng dụng khác

thumb|Các cơ chế động cơ đẩy ion tĩnh điện ban đầu được phát triển dùng cho caesi hoặc thủy ngân. Caesi và thủy ngân từng được dùng làm nhiên liệu trong động cơ đẩy của các động cơ ion thời kỳ đầu trên tàu không gian với các chuyến hành trình rất dài. Phương pháp ion hóa là việc tách các electron lớp ngoài cùng từ nhiên liệu khi tiếp xúc với điện cực wolfram có điện thế. Các vấn đề quan tâm như hoạt động ăn mòn của caesi đối với các bộ phận trên tàu không gian đã chuyển hướng phát triển sang ứng dụng nhiên liệu khí trơ, như xenon; loại này dễ xử lý trong các thí nghiệm ở mặt đất và ít có tiềm năng can thiệp trên phi thuyến không gian. Tuy nhiên, động cơ đẩy Field Emission Electric Propulsion sử dụng một hệ thống sơn giản các ion kim loại lỏng được tăng tốc như trường hợp của caesi để tạo ra lực đẩy đã được chế tạo.

Caesi nitrat được sử dụng làm chất oxy hóa và chất tạo màu để đốt silic trong pháo sáng hồng ngoại, như pháo sáng LUU-19, do nó phát ra nhiều ánh sáng trong quang phổ cận hồng ngoại. Caesi đã từng được sử dụng để giảm dấu vết khí thải động cơ trên màn hình radar của máy bay quân sự SR-71 Blackbird. Caesi cùng với rubidi đã được thêm vào dạng carbonat trong thủy tinh do nó giảm độ dẫn điện và tăng độ ổn định và độ bền của sợi quang học và các thiết bị quan sát ban đêm. Caesi fluoride hoặc nhôm fluoride được sử dụng trong chất hỗ trợ cấu trúc hàn hợp kim nhôm có chứa magnesi. Kim loại caesi cũng được xem là chất lỏng làm việc trong các chu trình Rankine nhiệt độ cao của các máy phát điện turboelectric. Các muối caesi được đánh giá là chất chống sốc đã được sử dụng sau khi tiêm do nhiễm độc asen. Do ảnh hưởng của nó lên nhịp tim, tuy nhiên, chúng có vẻ ít được dùng hơn so với các muối kali hay rubidi. Chúng cũng được dùng để trị động kinh.]] Các hợp chất caesi không phóng xạ có độ độc trung bình. Tiếp xúc một lượng lớn có thể gây khó chịu và co thắt, do tính chất tương tự của caesi so với kali, nhưng những lượng lớn như vậy không thể có được một cách thông thường trong các nguồn tự nhiên, vì thế caesi không bị coi là chất hóa học chính gây ô nhiễm môi trường. Liều gây chết trung bình (LD50) của caesi chloride đối với chuột là 2,3 g/kg, so với LD50 của kali chloride và natri chloride. Ứng dụng chính của caesi không phóng xạ, là caesi format trong dung dịch khoan dầu khí, lợi dụng độc tính thấp của nó để giảm chi phí thay thế. Caesi phóng xạ sau kali và có khuynh hướng tích lũy trong tế bào thực vật, như trong trái cây và rau. Thực vật hấp thụ caesi ở các mức khác nhau, một số không hấp thụ nhiều, và một số hấp thụ lượng lớn. đôi khi thể hiện khả năng kháng hấp thụ nó. Nó được ghi nhận rằng nấm trong các khu rừng bị ô nhiễm tích tụ caesi phóng xạ (caesi-137) trong túi sinh bào tử. Tích tụ caesi-137 trong các hồ được quan tâm nhiều sau thảm họa Chernobyl. Các thí nghiệm trên chó cho thấy một liều đơn 3,8 millicuries (140 MBq, 4,1 μg caesi-137) trên mỗi kilogram gây tử vong trong 3 tuần; một lượng nhỏ hơn có thể gây vô sinh và ung thư. Cơ quan Năng lượng Nguyên tử Quốc tế và các nguồn khác cảnh báo rằng các vật liệu phóng xạ như caesi-137 có thể được dùng trong các thiết bị phân tán phóng xạ hoặc "bom bẩn".

👁️ 2 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Caesi** (hay còn gọi là **Xê-si**, tiếng Anh: **cesium**, tiếng Latinh: "caesius") là một nguyên tố hóa học trong bảng tuần hoàn có ký hiệu **Cs** và số nguyên tử bằng 55. Nó là một
nhỏ|Viên nang Caesium 137 **Caesi-137** (, Cs-137), **cesium-137**, hay **caesi phóng xạ** là một đồng vị phóng xạ của caesi được hình thành từ phản ứng phân hạch hạt nhân của urani-235 và các đồng
**Caesi Oxide** mô tả một nhóm hợp chất vô cơ bao gồm hai nguyên tố là caesi và oxy. Các loại Oxide của caesi được biết đến là: Cs11O3, Cs4O, Cs7O, và **Cs2O**. Cả Oxide
**Caesi iodide** (công thức hóa học **CsI**) là một hợp chất của caesi và iod. Nó thường được sử dụng làm chất phosphor đầu vào của một ống tăng cường hình ảnh tia X được
**Caesi cacbonat** là một hợp chất vô cơ có công thức hóa học **Cs2CO3**, tồn tại dưới dạng rắn, có màu trắng. Hợp chất này có độ hòa tan cao trong các dung môi phân
**Caesi nitrat** là một hợp chất với công thức hóa học CsNO3. Đây là một nitrat kim loại kiềm, được sử dụng trong các chế phẩm pháo hoa, làm chất màu và chất oxy hóa,
**Caesi fluoride** là một hợp chất vô cơ với công thức hóa học CsF, thường gặp với dạng một chất rắn trắng hút ẩm. Nó được sử dụng trong tổng hợp hữu cơ như là
**Caesi chloride** là một hợp chất vô cơ với công thức hóa học CsCl. Chất rắn không màu này là một nguồn quan trọng của các ion caesi trong một loạt các ứng dụng thích
**Caesi hydroxide** (CsOH) là một hợp chất gồm một ion caesi và một ion hydroxide. Nó là một base mạnh (pKb=-1.76), giống các hydroxide kim loại kiềm khác như natri hydroxide và kali hydroxide. Trên
**Caesi hydride** (công thức phân tử: CsH) là một hợp chất vô cơ của caesi và hydro, là một hydride của kim loại kiềm. Đây là chất đầu tiên được tạo ra bởi photon hình
**Caesi bromide** là một hợp chất của caesi và brom với công thức phân tử CsBr. Đó là một chất rắn trắng hoặc trong suốt với điểm nóng chảy 636 °C và dễ tan trong nước.
**Robert Wilhelm Eberhard Bunsen** (ngày 31 tháng 3, năm 1811 – ngày 16 tháng 8, năm 1899) là nhà hóa học người Đức. Ông nghiên cứu quang phổ phát xạ của các nguyên tố bị
**Franci**, trước đây còn gọi là **eka-caesi** hay **actini K**, là một nguyên tố hóa học trong bảng tuần hoàn có ký hiệu **Fr** và số hiệu nguyên tử bằng 87. Nó có độ âm
**Rubidi** là nguyên tố hóa học với kí hiệu **Rb** và số hiệu nguyên tử 37. Rubidi là một kim loại kiềm rất mềm, có màu trắng xám giống kali và natri. Rubidi cũng là
**Kim loại kiềm** (tiếng Anh: _Alkali metal_) là một nhóm các nguyên tố hóa học gồm có lithi (Li), natri (Na), kali (K), rubidi (Rb), caesi (Cs) và franci (Fr). Các kim loại kiềm cùng
thumb|Những thùng chất thải phóng xạ [[Chất thải cấp thấp|cấp thấp của TINT]] **Chất thải phóng xạ** là chất thải chứa vật liệu phóng xạ. Chất thải phóng xạ thường là sản phẩm phụ của
thumb|[[Bảng tuần hoàn]] **Nguyên tố hóa học**, thường được gọi đơn giản là **nguyên tố**, là một chất hóa học tinh khiết, bao gồm một kiểu nguyên tử, được phân biệt bởi số hiệu nguyên
nhỏ|Nấm gypsy trong tự nhiên **_Cortinarius caperatus_** còn được gọi thông dụng với cái tên _nấm gypsy_, là một loại nấm ăn được thuộc chi _Cortinarius_ được tìm thấy ở các khu vực Bắc Âu
**Vàng** hay **kim** là nguyên tố hóa học có ký hiệu **Au** (lấy từ hai tự mẫu đầu tiên của từ tiếng La-tinh _aurum_, có nghĩa là vàng) và số nguyên tử 79, một trong
Cấu trúc hình thành chính của [[ammoniac, một trong những loại base được sử dụng phổ biến nhất trên thế giới.
Chú thích:
**H**: Hydro
**N**: Nitơ]] phải|nhỏ|[[Xà phòng là base yếu được tạo thành do phản ứng
**Ununenni** (phát âm như "un-un-en-ni"; tên quốc tế: _ununennium_; còn được gọi là _eka-franci_ hay _nguyên tố 119_) là tên tạm thời của một nguyên tố hóa học giả thuyết trong bảng tuần hoàn có
**Titan(III) sunfat** là một hợp chất vô cơ, một muối của kim loại titan và axit sunfuric có công thức hóa học **Ti2(SO4)3** – tinh thể màu xanh lục, không tan trong nước, tạo thành
**Titan(II) bromide** là một hợp chất vô cơ có công thức hóa học **TiBr2**. Nó là một chất rắn màu đen giống mica. Nó có cấu trúc cadmi(II) iodide, có các tâm Ti(II) bát diện.
**Brom monofluoride** là một hợp chất halogen kém bền với công thức hóa học BrF. Đây là chất lỏng ở nhiệt độ phòng, có màu đỏ vàng, dễ bay hơi và có mùi khó chịu.
phải|nhỏ|491x491px|[[Bản đồ thế giới của các múi giờ hiện tại]] **Thời gian Phối hợp Quốc tế** hay **UTC**, thường gọi là **Giờ Phối hợp Quốc tế**, là một chuẩn quốc tế về ngày giờ thực
**Hằng số Planck** là một hằng số vật lý cơ bản, ký hiệu bằng h, có tầm quan trọng to lớn trong cơ học lượng tử. Năng lượng của một photon bằng tần số của
**Natri** (bắt nguồn từ tiếng Tân Latinh: _natrium_; danh pháp IUPAC: **sodium**; ký hiệu hóa học: **Na**) là một nguyên tố hóa học thuộc nhóm kim loại kiềm có hóa trị một trong bảng tuần
Bảng tuần hoàn tiêu chuẩn 18 cột. Màu sắc thể hiện các nhóm [[nguyên tố hoá học của nguyên tử khác nhau và tính chất hóa học trong từng nhóm (cột)]] **Bảng tuần hoàn** (tên
**Thủy ngân** (**水銀**, dịch nghĩa Hán-Việt là "nước bạc") là nguyên tố hóa học có ký hiệu **Hg** (từ tên tiếng Latinh là **_H**ydrar**g**yrum_ ( hy-Drar-jər-əm)) và số hiệu nguyên tử 80. Nó có nhiều
**Poloni-210** là một đồng vị của nguyên tố Poloni, được khám phá đầu tiên bởi khoa học gia Marie Curie vào cuối thế kỷ 19. Poloni-210 là một chất cực độc, chỉ cần một lượng
**Thời gian Nguyên tử Quốc tế** (TAI) là thời gian được đo bằng dao động của các sóng điện từ được phát ra do các nguyên tử hoặc phân tử chuyển dịch từ mức năng
**Gali** (bắt nguồn từ từ tiếng Pháp _gallium_ (/ɡaljɔm/)), còn được viết là **ga-li**, hay thép, làm cho chúng trở nên rất giòn. Ngoài ra, gali kim loại cũng dễ dàng tạo ra hợp kim
nhỏ|phải|Đồng hồ treo tường **Đồng hồ** là một dụng cụ thường dùng để đo khoảng thời gian dưới một ngày; khác với lịch, là một dụng cụ đo thời gian một ngày trở lên. Có
**Giới Nấm** (tên khoa học: **Fungi**) bao gồm những sinh vật nhân chuẩn dị dưỡng có thành tế bào bằng kitin (chitin). Phần lớn nấm phát triển dưới dạng các sợi đa bào được gọi
Trong hóa học, một **siêu base** là một base có ái lực đặc biệt cao với proton. Ion hydroxide là base mạnh nhất có thể tồn tại trong dung dịch nước. Các siêu base được
**Gustav Robert Kirchhoff** (12 tháng 3 năm 1824 – 17 tháng 10 năm 1887) là một nhà vật lý người Đức đã có những đóng góp cơ bản về các khái niệm trong mạch điện,
**Bikini** ( hoặc ; Marshall: _Pikinni_, có nghĩa là "nơi của dừa"), đôi khi được gọi là **Đảo san hô vòng Eschscholtz** giữa những năm 1800 đến 1946 (xem phần Từ nguyên dưới đây để
**Natri acetat**, (hay _natri etanoat_) là muối natri của axit acetic có công thức hóa học **CH3COONa** Nó là hóa chất rẻ được sản xuất hàng loạt và có nhiều ứng dụng. ## Ứng dụng
**Niên biểu hóa học** liệt kê những công trình, khám phá, ý tưởng, phát minh và thí nghiệm quan trọng đã thay đổi mạnh mẽ vốn hiểu biết của nhân loại về một môn khoa
**Rubidi nitrat** là một hợp chất vô cơ có thành phần gồm nguyên tố rubidi và nhóm nitrat, có công thức hóa học là RbNO3. Muối nitơ kim loại kiềm này có màu trắng và
**Argon florohydrua** (tên hệ thống: _fluoridehydridoargon_) hoặc **argon hydrofluoride** là một hợp chất vô cơ có công thức hóa học **HArF** (cũng được viết bằng ArHF). Nó là một hợp chất của nguyên tố hóa
|- | colspan="2" style="text-align:center" | thế=2-D skeletal version of the ammonium ion|170x170px|2-D skeletal version of the ammonium ion |- ! scope="row" |Danh pháp IUPAC | Amoni |- ! scope="row" |Tên hệ thống | Azani |-
**Germani đichloride** là một hợp chất vô cơ của germani và clo với công thức hóa học **GeCl2**. Nó là một chất rắn màu vàng nhạt và chứa germani ở trạng thái oxy hóa +2.
thumb|Hệ đo lường Quốc tế SI sau định nghĩa lại: Các đơn vị cơ bản được định nghĩa dựa trên các [[hằng số vật lý với giá trị số đặt cố định và dựa trên
**Phân người, human feces **(hoặc **phân, ** **faeces **trong tiếng Anh; , cách gọi thô tục: **cứt**) là phần đặc hoặc nửa đặc còn lại của thức ăn không được tiêu hóa hay hấp thụ
Danh sách đồng vị đã được tìm thấy. ## Chu kỳ 1 ### Neutroni, Z= 0 Neutroni là tên đặt cho hạt là tổ hợp chỉ gồm neutron, được xem là nguyên tố về vật
**Franci hydroxide** là một hợp chất vô cơ giả định có công thức hóa học là **FrOH**. Nó là một base của franci. ## Điều chế Nó có thể được điều chế bằng cách cho
**John Lewis "Jan" Hall** (sinh năm 1934) là nhà vật lý người Mỹ. Ông cùng Theodor W. Hänsch giành Giải Nobel Vật lý năm 2005 do những đóng góp cho sự phát triển quang phổ
**Franci chloride** là một hợp chất vô cơ có tính phóng xạ có công thức hóa học **FrCl**. Nó được dự đoán là một chất rắn màu trắng và hòa tan trong nước. Tính chất
liên kết=//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Pouring liquid mercury bionerd.jpg/220px-Pouring liquid mercury bionerd.jpg|nhỏ| Thủy ngân, một kim loại lỏng điển hình với dạng lỏng ổn định ở ngưỡng nhiệt độ phòng. **Kim loại lỏng** là kim loại hoặc hợp chất