✨Hằng số Planck
Hằng số Planck là một hằng số vật lý cơ bản, ký hiệu bằng , có tầm quan trọng to lớn trong cơ học lượng tử. Năng lượng của một photon bằng tần số của nó nhân với hằng số Planck. Do tương đương khối lượng–năng lượng, hằng số Planck cũng liên hệ giữa khối lượng và tần số.
Trong đo lường học, hằng số Planck, cùng những hằng số khác, được dùng để định nghĩa kilogram, một đơn vị SI. Các đơn vị SI được định nghĩa sao cho khi biểu diễn hằng số Planck trong các đơn vị SI, nó có giá trị đúng bằng
Cuối thế kỷ 19, phổ bức xạ vật đen đã được đo với độ chính xác cao, nhưng phân bố của những phép đo ở tần số cao chênh lệch đáng kể so với những tiên đoán bằng lý thuyết thời bấy giờ. Năm 1900, Max Planck bằng thực nghiệm đưa ra một công thức cho phổ quan sát được. Ông giả sử một hạt tích điện dao động trong một khoảng trống với bức xạ vật đen chỉ có thể thay đổi mức năng lượng của nó theo bước nhỏ tỷ lệ thuận với tần số của sóng điện từ tương ứng. Sau phát hiện của Planck, một giả thuyết mới xuất hiện cho rằng tác động vật lý không thể có giá trị bất kỳ, mà phải là bội số nguyên của một đại lượng rất nhỏ, "lượng tử của tác động", nay được gọi là hằng số Planck. Đây là một ý tưởng cốt yếu trong "thuyết lượng tử cũ" phát triển bởi các nhà vật lý như Bohr, Sommerfeld, và Ishiwara, trong đó tồn tại quỹ đạo hạt nhưng chúng bị ẩn đi, và chúng tuân theo các định luật lượng tử. Quan điểm này đã bị thay thế bởi thuyết lượng tử hiện đại, trong đó quỹ đạo chuyển động thậm chí không tồn tại; một hạt được biểu diễn bằng một hàm sóng trong không gian và thời gian. Cùng với đó là khái niệm lượng tử năng lượng, và cả chuyển động hạt lẫn lượng tử năng lượng đều không thể được giải thích bởi vật lý cổ điển.
Giá trị
Hằng số Planck có thứ nguyên của mômen động lượng. Trong đơn vị SI, hằng số Planck được biểu diễn bằng joule trên hertz (J⋅Hz hoặc kg⋅m2⋅s−1). Một điểm cần lưu ý trong thứ nguyên của hằng số Planck là việc đơn vị SI của tần số, hertz, biểu diễn một chu kỳ trọn vẹn, 360 độ hay radian, một giây. Tần số góc bằng radian trên giây thường tự nhiên hơn trong toán và vật lý, và nhiều công thức sử dụng hằng số Planck rút gọn. : : Các giá trị trên là chính xác và cố định sau lần định nghĩa lại đơn vị cơ bản SI năm 2019.
Cố định giá trị của h
Từ năm 2019, giá trị của hằng số Planck đã được cố định, với biểu diễn thập phân hữu hạn. Dưới định nghĩa hiện tại của kilogram, phát biểu rằng, "Kilogram [...] được định nghĩa bằng cách cố định giá trị của bằng với đơn vị J⋅s, tương đương với kg⋅m2⋅s−1, trong đó mét và giây được định nghĩa bằng tốc độ ánh sáng và tần số chuyển siêu tinh tế của trạng thái cơ bản của một nguyên tử caesi-133 ." Điều này nghĩa là giá trị của một kilogram, chứ không phải giá trị của hằng số Planck, cần phải được tìm bằng thực nghiệm, bằng những phương pháp như cân Kibble và phương pháp mật độ tinh thể tia X. Để minh họa cụ thể hơn, giả sử quyết định cố định giá trị của được đưa ra năm 2010. Khi đó, giá trị của là , và từ đó giá trị của kilogram cũng được tính từ con số này. Những thực nghiệm trong tương lai sẽ cho thấy giá trị của kilogram lúc ấy bằng lần giá trị của Nguyên mẫu Kilogram Quốc tế (IPK).
Nguồn gốc
thumb|Bảng đồng tại [[Đại học Humboldt Berlin: "Max Planck, người phát hiện lượng tử cơ bản h, dạy ở đây từ 1889 đến 1928."]] thumb|Cường độ ánh sáng phát ra từ một [[vật đen. Mỗi đường cong biểu diễn hành vi tại một nhiệt độ khác nhau. Hằng số Planck được dùng để giải thích hình dáng của những đường này.]] thumb|Sự chênh lệch giữa đường cong Rayleigh–Jeans (đen) và đường cong Planck quan sát được ở những nhiệt độ khác nhau. Hằng số Planck xuất phát từ nỗ lực của Max Planck để đưa ra một biểu thức toán học nhằm tiên đoán phổ bức xạ từ một nguồn nhiệt kín, hay bức xạ vật đen. Kết quả là một biểu thức toán học với tên gọi định luật Planck.
Cuối thế kỷ 19, Max Planck xem xét vấn đề bức xạ vật đen do Kirchhoff đưa ra khoảng 40 năm trước đó. Tất cả vật thể vật lý phát ra bức xạ điện từ tự động và liên tục. Không có biểu thức hay lời giải thích nào cho hình dạng của phổ bức xạ quan sát được. Vào lúc đó, định luật Wien khớp với dữ liệu ở bước sóng ngắn và nhiệt độ cao, nhưng sai khác hoàn toàn ở bước sóng dài. dẫn đến một công thức thực nghiệm cho bước sóng dài.
Planck tìm ra một biểu thức khớp với định luật Wien ở bước sóng ngắn và công thức thực nghiệm ở bước sóng dài. Biểu thức này có một hằng số , được cho là lấy từ Hilfsgrösse (biến phụ), và sau được biết đến là hằng số Planck. Biểu thức cho độ rọi phổ chiếu xạ của một vật đen với tần số tại nhiệt độ tuyệt đối là :
trong đó là hằng số Boltzmann, là hằng số Planck, và là tốc độ ánh sáng trong môi trường, có thể là vật liệu hoặc chân không.
Độ rọi phổ chiếu xạ (tiếng Anh: "spectral radiance") của một vật miêu tả mức năng lượng nó phát ra ở những tần số bức xạ khác nhau. Đại lượng này bằng công suất phát xạ trên một đơn vị diện tích bề mặt, trên một đơn vị góc khối, trên một đơn vị tần số. Độ rọi phổ chiếu xạ cũng có thể được biểu diễn trên một đơn vị bước sóng thay vì một đơn vị tần số. Trong trường hợp đó, công thức trên trở thành :
cho thấy năng lượng bức xạ ở bước sóng ngắn tăng theo nhiệt độ nhanh hơn so với ở bước sóng dài.
Định luật Planck cũng có thể được biểu diễn theo những đại lượng khác, ví dụ như số photon bức xạ ở bước sóng nhất định, hay là mật độ năng lượng trên một thể tích bức xạ. Đơn vị SI của là , còn của là .
Planck sớm nhận ra rằng lời giải của ông không phải là duy nhất. Một số lời giải khác tồn tại, mỗi cái cho giá trị entropy của các hạt dao động khác nhau. Một trong những điều kiện của lời giải này là
Với điều kiện mới này, Planck đã lượng tử hóa năng lượng của các hạt dao động, "một giả thuyết hoàn toàn hình thức ... thực tế tôi không nghĩ nhiều về nó ..." theo lời của chính ông. Áp dụng điều kiện này cho định luật Wien cho thấy "phần tử năng lượng" phải tỉ lệ với tần số của dao động, ngày nay gọi là "liên hệ Planck–Einstein": :
Sử dụng dữ liệu bức xạ vật đen từ thí nghiệm, Planck tính được giá trị của bằng khoảng , sai khác 1,2% so với giá trị chính thức ngày nay.
Phát triển và ứng dụng
Vấn đề vật đen được xét lại vào năm 1905, khi Rayleigh cùng với Jeans và độc lập với Einstein chứng minh rằng điện từ học cổ điện không thể giải thích phổ bức xạ đo được. Những chứng minh này thường được biết đến với tên gọi "thảm họa cực tím", do Paul Ehrenfest đặt năm 1911. Chúng, cùng với nghiên cứu của Einstein về hiệu ứng quang điện, khiến các nhà vật lý học ngày càng tin rằng việc lượng tử hóa mức năng lượng của Planck có ý nghĩa sâu hơn là một công cụ toán học đơn thuần. hội nghị Solvay đầu tiên năm 1911 có chủ đề "lý thuyết bức xạ và lượng tử".
Hiệu ứng quang điện
Hiệu ứng quang điện là sự phát xạ electron (gọi là "quang điện tử") từ một bề mặt có ánh sáng chiếu vào. Hiện tượng này lần đầu được quan sát bởi Alexandre Edmond Becquerel năm 1839, mặc dù các nguồn thường ghi nhận Heinrich Hertz, người xuất bản nghiên cứu chi tiết đầu tiên năm 1887. Một nghiên cứu khác của Philipp Lenard (Lénárd Fülöp) được xuất bản năm 1902. Năm 1905, Einstein viết bài báo thảo luận về hiện tượng này bằng lượng tử ánh sáng, một thành tựu đã cho ông giải Nobel Vật lý năm 1921,
Trước bài báo của Einstein, bức xạ điện từ như ánh sáng được coi là có hành vi của sóng: đó cũng là nguồn gốc cho các thuật ngữ "tần số" và "bước sóng" dùng để miêu tả các loại bức xạ khác nhau. Năng lượng của một sóng trên một đơn vị thời gian là cường độ. Ánh sáng từ một đèn pha sân khấu có cường độ lớn hơn ánh sáng của một bóng đèn dân dụng, tức đèn pha tỏa ra nhiều năng lượng hơn trên một đơn vị thời gian và một đơn vị không gian, ngay cả khi màu sắc của hai bóng đèn rất giống nhau. Những loại sóng khác như âm thanh hay sóng biển cũng có cường độ của chúng. Tuy nhiên, năng lượng của hiệu ứng quang điện không có tính chất giống như sóng ánh sáng.
Các quang điện tử được phát ra có động năng nhất định, và động năng của mỗi quang điện tử là độc lập với cường độ của ánh sáng, Giả sử tần số đủ cao để gây ra hiệu ứng quang điện, cường độ nguồn sáng tăng dẫn đến nhiều quang điện tử với cùng động năng được phát ra, thay vì cùng số lượng quang điện tử với động năng lớn hơn. Niels Bohr trích dẫn ông trong bài báo mô hình nguyên tử Bohr năm 1913. Ảnh hưởng của mô hình hạt nhân nguyên tử Nicholson lên mô hình của Bohr đã được nhiều nhà sử học nghiên cứu.
Năm 1913, Niels Bohr đưa ra mô hình lượng tử của nguyên tử thứ ba, nhằm giải quyết những thiếu sót của mô hình Rutherford cổ điển. Mô hình nguyên tử lượng tử đầu tiên được đề xuất bởi Arthur Erich Haas năm 1910 và được thảo luận chi tiết ở Hội nghị Solvay 1911. Trong điện từ học cổ điển, một điện tích chuyển động tròn sẽ phát ra bức xạ điện từ. Nếu điện tích đó là một electron quay quanh hạt nhân, bức xạ sẽ khiến nó mất năng lượng và rơi dần vào hạt nhân. Bohr giải quyết nghịch lý này với cảm hứng từ công trình của Planck: một electron trong nguyên tử Bohr chỉ có thể có mức năng lượng định trước , trong đó
:
với là tốc độ ánh sáng trong chân không, là hằng số xác định từ thực nghiệm (hằng số Rydberg), và Khi electron đạt mức năng lượng thấp nhất (), nó không thể tiến gần hơn đến hạt nhân nữa. Phương pháp này cho phép Bohr tính đến công thức Rydberg, một miêu tả thực nghiệm cho phổ nguyên tử của hydro, và giải thích cho giá trị của hằng số Rydberg bằng những hằng số cơ bản khác.
Bohr cũng đề xuất đại lượng , ngày nay gọi là hằng số Planck rút gọn, làm lượng tử cho mô men động lượng. Ban đầu, Bohr cho rằng đại lượng này là mômen động lượng của mỗi electron trong nguyên tử, nhưng giả thiết này sai, và mặc cho nỗ lực của Arnold Sommerfeld và những người khác, mô hình Bohr không thể miêu tả chính xác mômen động lượng của electron. Quy luật lượng tử hóa tổng quát cho electron – trong đó mô hình Bohr là trường hợp đặc biệt cho nguyên tử hydro – được miêu tả bởi cơ học ma trận của Heisenberg năm 1925 và phương trình sóng Schrödinger năm 1926, và hằng số Planck rút gọn vẫn là lượng tử cơ bản cho mômen động lượng. Cụ thể hơn, nếu là tổng mômen động lượng của một hệ với bất biến quay và là mômen động lượng đối với một trục bất kỳ, chúng chỉ có thể mang các giá trị :
Nguyên lý bất định
Hằng số Planck cũng xuất hiện trong biểu thức của nguyên lý bất định của Werner Heisenberg. Với nhiều hạt ở cùng trạng thái, sự bất định về vị trí và sự bất định về động lượng thỏa mãn :
trong đó sự bất định được định nghĩa là độ lệch chuẩn của giá trị đo được từ giá trị kỳ vọng. Có một số cặp biến liên hợp đo được khác tuân theo một nguyên lý tương tự, ví dụ như thời gian và năng lượng. Mối quan hệ tỉ lệ nghịch giữa hai độ bất định này dẫn đến một đánh đổi trong các thí nghiệm lượng tử, khi mà càng đo chính xác một đại lượng khiến đại lượng kia càng sai lệch.
Ngoài ra, một trong những nền móng của cơ học lượng tử nằm trong quan hệ giao hoán tử giữa toán tử vị trí và toán tử động lượng : : trong đó là Kronecker delta.
:kB =