✨Lượng tử

Lượng tử

Trong vật lý, lượng tử là số lượng tối thiểu của bất kỳ thực thể vật lý (thuộc tính vật lý) tham gia vào một sự tương tác. Khái niệm cơ bản rằng một thuộc tính vật lý có thể được "lượng tử hóa" được gọi là "giả thuyết lượng tử hóa ". Điều này có nghĩa là độ lớn của thuộc tính vật lý chỉ có thể nhận các giá trị rời rạc bao gồm các bội số nguyên của một lượng tử.

Ví dụ, một photon là một lượng tử ánh sáng (hoặc bất kỳ dạng bức xạ điện từ nào khác). Tương tự, năng lượng của một electron liên kết bên trong nguyên tử được lượng tử hóa và chỉ có thể tồn tại ở một số giá trị rời rạc nhất định. (Nguyên tử và vật chất nói chung là ổn định vì các điện tử chỉ có thể tồn tại ở các mức năng lượng riêng biệt trong nguyên tử.) Lượng tử hóa là một trong những nền tảng của vật lý rộng lớn hơn nhiều của cơ học lượng tử. Lượng tử hóa năng lượng và ảnh hưởng của nó đến cách năng lượng và vật chất tương tác (điện động lực học lượng tử) là một phần của khuôn khổ cơ bản để hiểu và mô tả thiên nhiên.

Tài nguyên và khám phá

Từ gốc quantum là số ít trung tính của Latin quantus tính từ nghi vấn, có nghĩa là "bao nhiêu". "Quanta", số nhiều trung tính, viết tắt của "lượng tử điện" (electron), được sử dụng trong một bài báo năm 1902 về hiệu ứng quang điện của Philipp Lenard, người cho rằng Hermann von Helmholtz đã sử dụng từ này trong lĩnh vực điện. Tuy nhiên, từ lượng tử nói chung đã được biết đến nhiều trước năm 1900, ví dụ như lượng tử được sử dụng trong EA Poe's Loss of Breath. Nó thường được sử dụng bởi các bác sĩ, chẳng hạn như trong thuật ngữ lượng tử thỏa mãn. Cả Helmholtz và Julius von Mayer đều là bác sĩ cũng như nhà vật lý. Helmholtz đã sử dụng lượng tử liên quan đến nhiệt trong bài báo của ông về công trình của Mayer, và từ lượng tử có thể được tìm thấy trong công thức của định luật nhiệt động lực học đầu tiên của Mayer trong bức thư của ông ngày 24 tháng 7 năm 1841.

Năm 1901, Max Planck sử dụng quanta có nghĩa là "lượng tử của vật chất và điện", khí và nhiệt. Năm 1905, để đáp lại công trình của Planck và công trình thí nghiệm của Lenard (người đã giải thích kết quả của mình bằng cách sử dụng thuật ngữ lượng tử điện), Albert Einstein cho rằng bức xạ tồn tại trong các gói bản địa hóa không gian mà ông gọi là "lượng tử ánh sáng" ("Lichtquanta").

Khái niệm lượng tử hóa bức xạ được phát hiện vào năm 1901 bởi Max Planck, người đã cố gắng tìm hiểu sự phát bức xạ từ các vật thể bị nung nóng, được gọi là bức xạ vật đen. Bằng cách giả định rằng năng lượng chỉ có thể được hấp thụ hoặc giải phóng trong các gói nhỏ, vi phân, rời rạc (mà ông gọi là "bó", hay "phần tử năng lượng"), Planck đã tính đến một số vật thể thay đổi màu sắc khi bị đốt nóng. Vào ngày 14 tháng 12 năm 1900, Planck báo cáo những phát hiện của mình cho Hiệp hội Vật lý Đức, và lần đầu tiên giới thiệu ý tưởng lượng tử hóa như một phần trong nghiên cứu của ông về bức xạ vật đen. Kết quả của các thí nghiệm của mình, Planck đã suy ra giá trị số của h, được gọi là hằng số Planck, và báo cáo các giá trị chính xác hơn cho đơn vị điện tích và số Avogadro – Loschmidt, số phân tử thực trong một mol, cho Hội Vật lý Đức. Sau khi lý thuyết của mình được xác thực, Planck đã được trao giải Nobel Vật lý cho khám phá của ông vào năm 1918.

Lượng tử hóa

Khái niệm cơ bản rằng một tính chất vật lý có thể được "lượng tử hóa" được gọi là "giả thuyết lượng tử hóa".. Trong nỗ lực đưa lý thuyết vào thỏa thuận với thực nghiệm, Max Planck đã quy định rằng năng lượng điện từ được hấp thụ hoặc phát ra trong các gói hoặc lượng tử riêng biệt.

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
thumb|upright=1.3|Các [[hàm sóng của electron trong một nguyên tử hydro tại các mức năng lượng khác nhau. Cơ học lượng tử không dự đoán chính xác vị trí của một hạt trong không gian, nó
Trong vật lý, **lượng tử** là số lượng tối thiểu của bất kỳ thực thể vật lý (thuộc tính vật lý) tham gia vào một sự tương tác. Khái niệm cơ bản rằng một thuộc
Máy tính lượng tử là hệ thống có thể thực thi vô số phép tính phức tạp cùng một lúc mà một máy tính thông thường có thể phải mất hàng triệu năm mới xong.
**Biến đổi Fourier lượng tử** là một phép biến đổi tuyến tính trên các qubit (đơn vị cơ bản của thông tin lượng tử), phép biến đổi này tương tự như biến đổi Fourier rời
**Sinh học lượng tử** là ngành ứng dụng cơ học lượng tử và hóa học lý thuyết vào các khía cạnh của sinh học không thể được diễn giải một cách chính xác bằng các
Trong vật lý, **lượng tử hóa** là quá trình chuyển đổi từ một quan niệm cổ điển của hiện tượng vật lý sang một quan niệm mới hơn được biết đến trong cơ học lượng
Một trong những kiến ​​trúc máy tính lượng tử có triển vọng nhất là **máy tính lượng tử bẫy ion**. Thiết kế này đã được đề xuất lý thuyết vào năm 1995 bởi Cirac và
Trong vật lý lý thuyết, **Lý thuyết trường lượng tử** (tiếng Anh: **quantum field theory**, thường viết tắt QFT) là một khuôn khổ lý thuyết để xây dựng các mô hình cơ học lượng tử
Trong tính toán lượng tử, **thuật toán lượng tử** là một thuật toán chạy bằng mô hình thực tế của tính toán lượng tử, mô hình được sử dụng phổ biến nhất là mô hình
**Điện toán lượng tử** là một trong các phương pháp xử lý thông tin tiến bộ trong tương lai. Theo đó người ta sẽ sử dụng những nguyên lý của cơ học lượng tử để
**Khoa học thông tin lượng tử** là một ngành học có tính liên ngành trong đó nhà nghiên cứu theo đuổi việc hiểu biết quá trình phân tích, gia công và truyền tải thông tin
**Mật mã lượng tử** là một ngành khoa học nghiên cứu về bảo mật thông tin dựa trên các tính chất của vật lý lượng tử. Trong khi mật mã truyền thống khai thác chủ
Việc tìm kiếm một lý thuyết lượng tử của trường hấp dẫn, qua đó tìm hiểu các đặc điểm của không-thời gian, lượng tử vẫn là một vấn đề mở. Một trong những hướng tiếp
**Số lượng tử chính** là một số lượng tử, chủ yếu thể hiện mức năng lượng của electron trong nguyên tử. Mô hình nguyên tử Bohr chỉ miêu tả được trạng thái năng lượng thấp
thumb|Cách biểu diễn bằng [[Mặt cầu Bloch cho một qubit, yếu tố cơ bản trong máy tính lượng tử.]] **Máy tính lượng tử** (còn gọi là **siêu máy tính lượng tử**) là một thiết bị
Sự xuất hiện của Vật lý lượng tử và thuyết tương đối là một cuộc cách mạng của Vật lý học vào cuối thế kỷ XIX đầu thế kỷ XX và là cơ sở khoa
**Vướng mắc lượng tử,** **liên đới lượng tử** hay **rối lượng tử** là một hiệu ứng trong cơ học lượng tử trong đó trạng thái lượng tử của hai hay nhiều vật thể có liên
Trong cơ học lượng tử, **Phép đo lượng tử yếu** là một trường hợp đặc biệt của mô hình chuẩn von Neumann cho phép đo lượng tử, trong đó hệ lượng tử cần đo tương
Trong cơ học lượng tử, một **hệ hai trạng thái** là một hệ có 2 trạng thái lượng tử khả thi, ví dụ spin của một hạt spin-1/2 như electron có thể nhận giá trị
**Hấp dẫn lượng tử** (Quantum gravity-**QG**) là tên gọi chung cho nhiều lý thuyết vật lý với mục tiêu miêu tả tương tác hấp dẫn tuân theo những nguyên lý của cơ học lượng tử.
Trong vật lý hạt, **điện động lực học lượng tử** (**QED**) là lý thuyết trường lượng tử tương đối tính của điện động lực học. Về cơ bản, nó miêu tả cách ánh sáng và
Trong mô hình mạch lượng tử sử dụng để tính toán trong máy tính lượng tử, **cổng lượng tử** là một mạch lượng tử cơ bản. Chúng có vai trò giống như các cổng logic
**Mạng lượng tử** là mạng lưới truyền thông hoạt động dựa trên các nguyên tắc của cơ học lượng tử, đặc biệt là cơ chế vướng víu lượng tử. ## Lịch sử phát triển Ngày
**Phát biểu toán học của cơ học lượng tử** là các hình thức toán học cho phép mô tả chặt chẽ cơ học lượng tử. ## Các tiên đề #### Tiên đề 1 Nội dung
**Lập trình lượng tử** là quá trình thiết kế hoặc ghép nối các chuỗi lệnh, được gọi là mạch lượng tử, sử dụng các cổng, công tắc và toán tử để điều khiển hệ thống
Trong logic toán học, **lượng từ với mọi** hay **lượng từ phổ dụng** là một loại lượng từ, một hằng logic ký hiệu cho "với bất kỳ" hay "với mọi". Nó biển thị rằng một
thumb|Chấm lượng tử trong dung dịch keo được chiếu xạ với ánh sáng UV. Chấm lượng tử có kích thước khác nhau phát ra ánh sáng màu khác nhau do hiệu ứng giam giữ lượng
nhỏ|*Ảnh minh họa* **Công nghệ lượng tử** (tiếng Anh: _Quantum technology_) là một lĩnh vực mới của vật lý và kỹ thuật, trong đó chuyển tiếp một số tính năng của cơ học lượng tử,
Trong cơ học lượng tử, **lý thuyết nhiễu loạn** là một tập hợp các sơ đồ gần đúng liên quan trực tiếp đến nhiễu loạn toán học để mô tả một hệ lượng tử phức
Trong cơ học lượng tử, **phương pháp biến phân** là một cách để tìm gần đúng trạng thái riêng năng lượng thấp nhất hay trạng thái cơ bản, và một số trạng thái kích thích.
**Hóa học lượng tử**, còn gọi là **hóa lượng tử**, là một ngành khoa học ứng dụng cơ học lượng tử để giải quyết các vấn đề của hóa học. Các ứng dụng có thể
**Thuyết sắc động lực học lượng tử** (_Quantum chromodynamics_ hay **QCD**) là lý thuyết miêu tả một trong những lực cơ bản của vũ trụ, đó là tương tác mạnh. Nó miêu tả các tương
Trong vật lý lượng tử, một **trạng thái lượng tử** là một đối tượng toán học diễn tả đầy đủ về một hệ lượng tử. Trạng thái lượng tử có thể được tạo nên bởi
**Quang học lượng tử** là một môn học về ánh sáng có mức năng lượng lượng tử được tìm thấy từ các hiện tượng Bức Xạ Điện Từ, Quang Điện, Phân rã Phóng Xạ Hạt
**Máy tính lượng tử Ca+** là một loại máy tính lượng tử bẫy ion . Máy tính lượng tử Ca+ đã được nhóm nghiên cứu của Đại học Innsbruck thực hiện thành công dựa trên
Sơ đồ hoạt động của [[kính hiển vi chui hầm điện tử, một sáng chế đã mang lại cho các tác giả của nó giải thưởng Nobel vật lý.]] Một ống sóng electron hướng vào
**Thuyết lượng tử cũ** là tập hợp của các kết quả nghiên cứu về Cơ học lượng tử trong giai đoạn 1900 - 1925 trước khi Cơ học lượng tử hiện đại ra đời. Lí
thumb|upright=1.5|Chồng chập lượng tử của các trạng thái và sự mất liên kết **Chồng chập lượng tử** (hay là **chồng chất lượng tử**, **xếp lớp lượng tử**) là một trong những nguyên lý cơ bản
**Số lượng tử** thể hiện các trạng thái lượng tử rời rạc của một hệ trong cơ học lượng tử. Ví dụ về hệ cơ học lượng tử thông dụng là: *một hạt electron trong
**Số lượng tử spin** tham số hóa bản chất nội tại của mô men xung lượng của mọi hạt cơ bản. Trong cơ học lượng tử mômen xung lượng của hạt cơ bản được mô
**Số lượng tử xung lượng** là một số lượng tử mô tả hình dạng mật độ phân bố của electron trong nguyên tử. Các hàm sóng của electron được đưa ra bởi lý thuyết của
**Số lượng tử từ** là một số lượng tử mô tả các trạng thái tương tác theo phương hướng trong không gian của electron trong nguyên tử với một trường điện từ bên ngoài. Orbital
**Viễn tải lượng tử** là một quá trình mà theo đó toàn bộ thông tin của một qubit (đơn vị cơ bản của thông tin lượng tử) có thể được truyền chính xác từ địa
**Mạch lượng tử**, trong lý thuyết thông tin lượng tử, là mô hình tính toán lượng tử trong đó tính toán là một chuỗi các cổng lượng tử, là các phép biến đổi thuận nghịch
Trong vật lý lượng tử, **thăng giáng lượng tử** hay **biến thiên lượng tử**, hay **dao động lượng tử** hay **biến thiên chân không lượng tử** hay **biến thiên chân không**, là một sự thay
**Tiền lượng tử** là ý tưởng về một loại tiền không thể làm giả, bằng cách ứng dụng vật lý lượng tử do Stephen Wiesner, một nghiên cứu sinh trường Đại học Columbia đưa ra
## 1.Năng lượng từ trường của một ống dây điện Giả sử lúc đầu mạch đã được đóng kín, trong mạch có một dòng điện không đổi I. Khi đó, toàn bộ năng lượng do
**Máy đo từ lượng tử**, còn gọi là _Máy đo từ kiểu bơm quang học_ (Optically Pumped Magnetometer), là loại _máy đo từ_ hoạt động dựa trên quan sát hiện tượng phân tách _mức năng
**Hiệu ứng Hall lượng tử** (tiếng Anh: _quantum Hall effect_) được phát hiện vào năm 1980 bởi Klaus von Klitzing và cộng sự. Hai năm sau, **hiệu ứng Hall lượng tử phân số** cũng được
**Phát xạ tự phát** là quá trình phát xạ xảy ra ở một hệ thống lượng tử đang ở trạng thái kích thích chuyển dời sang một trạng thái có năng lượng thấp hơn (hoặc