✨Số Liouville
Trong lý thuyết số, một số Liouville là một số thực x với tính chất rằng, với mọi số nguyên dương n, tồn tại các số nguyên _p và q với _q'' > 1 và sao cho :
Một số Liouville do đó có thể xấp xỉ rất sát bởi một dãy số hữu tỉ. Năm 1844, Joseph Liouville chỉ ra rằng tất cả các số Liouville là số siêu việt, nhờ đó đã thiết lập lần đầu tiên sự tồn tại của các số siêu việt. Một trong các số Liouville được sử dụng nhiều là hằng số Liouville.
👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong lý thuyết số, một **số Liouville** là một số thực _x_ với tính chất rằng, với mọi số nguyên dương _n_, tồn tại các số nguyên _p và _q_ với _q'' > 1 và
**Lý thuyết số siêu việt** là một nhánh của lý thuyết số nghiên cứu các số siêu việt (các số không phải là nghiệm của bất kỳ phương trình đa thức nào với các hệ
Trong toán học, một **hàm số sơ cấp** là một hàm của một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số
Trong toán học, một **hàm số cơ bản** là một hàm một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số và
nhỏ|363x363px| [[Pi (π) là một số siêu việt nổi tiếng ]] Trong toán học, một **số siêu việt** là một số thực hoặc số phức không phải là số đại số, nghĩa là nó không
thumb|[[Hình thất giác đều không thể dựng được thước kẻ và compa; Điều này có thể chứng minh sử dụng trường của số dựng được.]] Trong toán học, một **trường** là một tập hợp mà
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Joseph Liouville** (24 tháng 3 năm 1809 – 8 tháng 9 năm 1882) là một nhà toán học người Pháp, tốt nghiệp trường École Polytechnique, là giảng viên trường này và sau nhận ghế Giáo
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
Trong lý thuyết số, lĩnh vực **xấp xỉ Diophantine**, (được đặt tên theo nhà toán học Diophantus), nhằm nghiên cứu vấn đề "xấp xỉ các số thực bằng số hữu tỉ". Nếu giá trị tuyệt
phải|nhỏ|250x250px|Ma trận biến đổi _A_ tác động bằng việc kéo dài vectơ _x_ mà không làm đổi phương của nó, vì thế _x_ là một vectơ riêng của _A_. Trong đại số tuyến tính, một
**Amalie Emmy Noether** (, ; ; 23 tháng 3 năm 1882 – 14 tháng 4 năm 1935) là một nhà toán học người Đức nổi tiếng vì những đóng góp nền tảng và đột phá
Tích phân xác định được định nghĩa như diện tích _S_ được giới hạn bởi đường cong _y_=_f_(_x_) và trục hoành, với _x_ chạy từ _a_ đến _b_ **Tích phân** (Tiếng Anh: _integral_) là một
Trong lý thuyết số, **bài toán Waring** hỏi rằng có phải mỗi số tự nhiên _k_ đều có một số nguyên dương _s_ sao cho mỗi số tự nhiên đều có thể viết thành tổng
Trong lý thuyết số, **tích Euler** là dạng khai triển chuỗi Dirichlet thành tích vô hạn được đánh chỉ số bởi các số nguyên tố. Tích gốc xuất hiện trong bài chứng minh công thức
Trong lý thuyết số, **hàm nhân tính hoàn toàn** hay **hàm nhân tính toàn bộ** là một hàm số học giữ lại phép nhân giữa hai số bất kỳ. Nói cách khác, hàm số định
liên_kết=https://en.wikipedia.org/wiki/File:Perpendicular-coloured.svg|phải|nhỏ|220x220px|Các đoạn thẳng AB và CD trực giao với nhau. Trong toán học, **trực giao** là tổng quát hóa của khái niệm tính vuông góc trong lĩnh vực đại số tuyến tính về các dạng
**Georg Ferdinand Ludwig Philipp Cantor** (; – 6 tháng 1 năm 1918) là một nhà toán học người Đức, được biết đến nhiều nhất với tư cách cha đẻ của lý thuyết tập hợp, một
right|thumb|Hình chữ nhật kẻ ô (ảnh trên) và ảnh của nó dưới ánh xạ bảo giác (ảnh dưới). Có thể thấy rằng ánh xạ các cặp đường vuông góc với nhau tại 90°
**Jacques Charles François Sturm** ForMemRS (sinh ngày 29 tháng 9 năm 1803 – mất ngày 15 tháng 12 năm 1855) là nhà toán học người Pháp. ## Cuộc sống và Nghiên cứu Sturm được sinh
:_Ngoài lý thuyết số, cụm từ **hàm nhân tính** thường được dùng để chỉ hàm nhân tính hoàn toàn. Bài viết này nói về hàm nhân tính trong ngữ cảnh lý thuyết số._ Trong lý
**Josiah Willard Gibbs** (11 tháng 2 năm 1839 - 28 tháng 4 năm 1903) là một nhà khoa học người Mỹ đã có những đóng góp lý thuyết đáng kể cho vật lý, hóa học
Trong toán học, một **chứng minh** là một cách trình bày thuyết phục (sử dụng những chuẩn mực đã được chấp nhận trong lĩnh vực đó) rằng một phát biểu toán học là đúng đắn.
**Évariste Galois** (25 tháng 10 năm 1811, Bourg-la-Reine – 31 tháng 5 năm 1832, Paris) là nhà toán học người Pháp. Anh nổi tiếng nhất với lý thuyết Galois - lý thuyết nghiên cứu về
**Georg Friedrich Bernhard Riemann** (phát âm như "ri manh" hay IPA ['ri:man]; 17 tháng 9 năm 1826 – 20 tháng 7 năm 1866) là một nhà toán học người Đức, người đã có nhiều đóng
**Bài toán ngược** hay **bài toán nghịch đảo** (Inverse problem) trong khoa học là quá trình tính toán ra các nhân tố nhân quả (causal factors) dựa theo tập hợp các quan sát những đại
Trong vi tích phân nói riêng, và trong giải tích toán học nói chung, **tích phân từng phần** là quá trình tìm tích phân của tích các hàm dựa trên tích phân các đạo hàm
Trong cơ học lượng tử, **toán tử mô men động lượng** là một toán tử tương tự như mô men động lượng cổ điển. Nó quan trọng trong vật lý nguyên tử và các bài
Trong toán học, các **hàm Legendre** là các hàm số thỏa mãn **phương trình vi phân Legendre**: : Phương trình vi phân
thumb|right|Sự truyền của sóng dài cho thấy sự thay đổi của [[bước sóng và chiều cao sóng khi độ sâu mực nước giảm..]] Trong động lực học lưu chất, **định luật Green** mô tả tiến
**Định lý Ehrenfest**, được đặt tên theo nhà vật lý học người Áo đến từ trường Đại học Leiden Paul Ehrenfest, thể hiện mối quan hệ của đạo hàm theo thời gian của giá trị