✨Định lý con khỉ vô hạn

Định lý con khỉ vô hạn

Giả sử cho một con khỉ cái gõ liên tục trên một máy đánh chữ hay máy tính, sau một thời gian đủ dài, trong văn bản con khỉ gõ ra ta có thể tìm thấy tất cả các kịch bản của [[William Shakespeare|Shakespeare. Trong hình là một con tinh tinh và máy đánh chữ.]] Định lý con khỉ vô hạn nói rằng nếu cho một con khỉ gõ lên một bàn phím trong một thời gian vô hạn, một phần văn bản khỉ gõ ra gần như chắc chắn sẽ có nghĩa, ví dụ tất cả các tác phẩm của William Shakespeare. Trong bài này, "gần như chắc chắn" là thuật ngữ toán học có nghĩa rõ ràng, và "con khỉ" là một ẩn dụ về một thiết bị trừu tượng có thể tạo ra các chuỗi ngẫu nhiên ký tự và ký hiệu dài vô tận. Xác suất con khỉ gõ ra các tác phẩm của Shakespeare như Hamlet trong thời gian bằng tuổi vũ trụ thực ra rất nhỏ, nhưng vẫn khác 0.

Các biến thể của định lý bao gồm nhiều con khỉ gõ vô hạn, và văn bản mục tiêu thay đổi từ một mục từ điển đến một câu đơn. Lịch sử của nguyên lý bắt nguồn từ xa xưa, trong tác phẩm Luận về sinh diệt của Aristotle, Về bản tính thần minh của Cicero, các quan điểm của Blaise Pascal và Jonathan Swift, cho đến phiên bản hiện đại với máy đánh chữ. Trong những năm đầu thế kỷ 20, Émile Borel và Arthur Eddington sử dụng nguyên lý để minh họa cho thang thời gian ẩn giấu trong cơ sở của cơ học thống kê.

Chứng minh

Chứng minh trực tiếp

Có một chứng minh dễ hiểu cho định lý: Nếu hai sự kiện không phụ thuộc trạng thái, xác suất hai sự kiện cùng xảy ra là tích xác suất mỗi sự kiện. Ví dụ, khả năng mưa ở Hà Nội trong một ngày cụ thể là 0.3, khả năng có động đất ở Thành phố Hồ Chí Minh trong cùng ngày là 0.008, vậy xác suất hai sự kiện cùng xảy ra trong ngày đó là  0.3 × 0.008 = 0.0024, giả sử nó thực sự độc lập. Cho một máy đánh chữ có 50 phím, và từ cần gõ là banana. Giả sử các phím được gõ ngẫu nhiên (xác suất được gõ của các phím bằng nhau) và không phụ thuộc vào nhau, xác suất ký tự đầu tiên là 'b' là 1/50, xác suất ký tự thứ hai là 'a' là 1/50... vì các sự kiện không phụ thuộc lẫn nhau. Từ đó, xác suất sáu ký tự đầu tiên khớp với banana là:(1/50) × (1/50) × (1/50) × (1/50) × (1/50) × (1/50) = (1/50)6 = 1/15 625 000 000 , nhỏ hơn một phần mười lăm tỉ. Tương tự, xác suất 6 ký tự tiếp theo khớp với banana cũng là (1/50)6, và 6 ký tự tiếp sau đó.... Từ đó, xác suất không gõ ra từ banana trong một khối 6 ký tự là 1 − (1/50)6. Vì mỗi khối được gõ không phụ thuộc lẫn nhau, xác suất Xn để không gõ ra từ banana trong n khối 6 ký tự là:

:X_n=\left(1-\frac{1}{50^6}\right)^n.

Khi n tăng, Xn giảm. Với n bằng một triệu, Xn khoảng 0.9999, nhưng với n bằng mười tỉ Xn chỉ còn khoảng 0.53, và với n là 100 tỉ con số đó là 0.0017. Khi n tiến tới vô cực, Xn tiến tới không; nghĩa là bằng cách cho n đủ lớn, ta có thể có Xn nhỏ như mong muốn, và khi đó xác suất có một khối "banana" trong chuỗi gõ ra tiến tới 1. Hơn nữa vì từ có thể xuất hiện giữa hai khối, khả năng xuất hiện từ banana còn lớn hơn tính toán trên.

Lập luận tương tự chỉ ra tại sao có ít nhất một trong số các con khỉ vô hạn sẽ gõ ra từ cần thiết bằng với tốc độ của một người đánh máy bình thường. trong trường hợp này Xn = (1 − (1/50)6)n khi Xn biểu diễn xác suất n con khỉ đầu tiên không gõ đúng banana trong 6 ký tự đầu tiên. Khi xét 100 tỉ con khỉ, xác suất này là 0.17%, và khi số khỉ tăng lên, xác suất này tiến về không. Dù sao, nếu cho một số khỉ có nghĩa thực hiện gõ trong một khoảng thời gian có nghĩa, kết quả là ngược lại: Nếu có đủ nhiều khỉ và chúng gõ trong vũ trụ quan sát được (1080), và mỗi con khỉ gõ 1,000 ký tự trong một giây, liên tục gõ trong thời gian bằng 100 lần tuổi vũ trụ (1020 giây), xác suất bọn khỉ tái tạo lại một tác phẩm văn học ngắn là gần bằng 0.

Xâu vô hạn

Định lý này có thể được phát biểu tổng quát hơn với định nghĩa về xâu, với đây là các ký tự được chọn từ bảng chữ cái hữu hạn:

  • Cho một xâu vô hạn mà tất cả các ký tự đều được chọn ngẫu nhiên với xác suất đều nhau, bất kỳ xâu hữu hạn nào đó sẽ phải xuất hiện trong xâu vô hạn đó như là xâu con ở bất kỳ vị trí nào.

Xác suất

Gần như chắc chắn

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Giả sử cho một con khỉ cái gõ liên tục trên một máy đánh chữ hay máy tính, sau một thời gian đủ dài, trong văn bản con khỉ gõ ra ta có thể tìm
Trong hình học số học, **giả thuyết Mordell** là giả thuyết được đặt bởi Louis Mordell rằng đường cong với giống lớn hơn 1 trên trường **Q** của số hữu tỉ có hữu hạn số
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
Trong toán giải tích, **định lý Fubini**, được giới thiệu bởi Guido Fubini (1907), là một kết quả xác định các điều kiện mà theo đó người ta có thể tính toán một tích phân
Trong toán học và đặc biệt là giải tích thực, **định lý Bolzano-Weierstrass** (tiếng Anh: Bolzano-Weierstrass theorem, đặt theo tên hai nhà toán học là Bernand Bolzano và Karl Weierstrass) là một định lý quan
thumb|300 px|right|Với mọi hàm số liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm c \in (a,b) sao cho đường thẳng nối hai điểm (a,f(a))(b,f(b)) song song với tiếp
Trong lý thuyết độ đo, **định lý bánh mì dăm bông**, còn gọi là **định lý Stone–Tukey** theo Arthur H. Stone và John Tukey, phát biểu rằng với mọi _n_ "đối tượng" đo được trong
Trong Lý thuyết thông tin, **Định lý mã hóa trên kênh nhiễu** (_tiếng Anh: noisy-channel coding theorem_) đề xuất rằng, cho dù một kênh truyền thông có bị ô nhiễm bởi nhiễu âm bao nhiêu
**Các định lý bất toàn của Gödel**, hay gọi chính xác là **Các định lý về tính bất hoàn chỉnh của Gödel** (tiếng Anh: **Gödel's incompleteness theorems**, tiếng Đức: **Gödelscher Unvollständigkeitssatz**), là hai định lý
**Các** **định lý về điểm kỳ dị Penrose–Hawking** (sau Roger Penrose và Stephen Hawking) là một tập hợp các kết quả trong thuyết tương đối rộng cố gắng trả lời câu hỏi khi nào trọng
Trong Giải tích, **Định lý kẹp** là một định lý liên quan đến giới hạn của hàm số. Định lý kẹp là một công cụ mang tính kĩ thuật thường dùng trong các phép chứng
Trong toán học, **định lý Hahn–Banach** là một công cụ trung tâm của giải tích hàm. Nó cho phép mở rộng của các phiếm hàm tuyến tính bị chặn định nghĩa trên một không gian
phải|nhỏ|Ví dụ về bản đồ bốn màu **Định lý bốn màu** (còn gọi là _định lý bản đồ bốn màu_) phát biểu rằng đối với bất kỳ mặt phẳng nào được chia thành các vùng
**Định lý Kutta-Joukowski** còn gọi là **định lý Joukowski** hay **định lý Giu-cốp-ski** là định lý về lực nâng vật thể khi có sự chảy bao quanh của một dòng chất lỏng (khí) lý tưởng
**Định lý phạm trù Baire** là định lý quan trọng trong topo, trong giải tích hiện đại, định lý mang tên nhà toán học người Pháp René-Louis Baire (1874 - 1932). Định lý có hai
Trong toán học, **định lý khai triển nhị thức** (ngắn gọn là **định lý nhị thức**) là một định lý toán học về việc khai triển hàm mũ của tổng. Cụ thể, kết quả của
**Chứng minh của Wiles về định lý cuối cùng của Fermat** là chứng minh toán học của nhà toán học người Anh Andrew Wiles về một trường hợp đặc biệt của định lý Module đối
nhỏ | phải | Tổng các kết quả đầu ra khi gieo một con xúc sắc sẽ có xu hướng tuân theo phân phối chuẩn khi số lần gieo xúc sắc tăng lên Trong toán
Trong toán học, đặc biệt là trong lĩnh vực lý thuyết nhóm hữu hạn, **định lý Sylow** là một nhóm các định lý được đặt tên theo nhà toán học Na Uy Ludwig Sylow vào
**Chế định ly hôn trong Luật Hôn nhân và Gia đình Việt Nam** là tổng thể các quy phạm pháp luật quy định về việc ly hôn cùng các vấn đề phát sinh như việc
**Hiệu ứng con khỉ thứ 100** (_Hundredth monkey effect_) là một hiện tượng giả thuyết về tâm lý trong đó một hành vi hoặc ý tưởng mới được cho là lan truyền nhanh chóng bằng
Trong lý thuyết tập hợp, một **tập hợp vô hạn** là một tập hợp mà không phải là một tập hợp hữu hạn. Các tập hợp vô hạn có thể là đếm được hoặc không
**Hình.1:** Phổ giả định của một tín hiệu có tần số giới hạn (bandlimiting) được biểu diễn như là một hàm số theo tần số''' **Định lý lấy mẫu Nyquist** là một định lý được
nhỏ|phải|Côn nhị khúc phải|Côn nhị khúc **Côn nhị khúc** hay **côn hai đoạn** hay là **lưỡng tiết côn** hoặc **song tiết côn** hay **nhị đoản côn** (âm romaji tiếng Nhật là **nunchaku**) là một dạng
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
liên_kết=https://en.wikipedia.org/wiki/File:Rank-nullity.svg|nhỏ|263x263px|Mô tả liên hệ giữa hạng và số chiều của hạt nhân **Định lý về hạng** (còn gọi là **định lý về hạng và số vô hiệu**, **định lý về số chiều**) là một trong
**Ly thân** mô tả quan hệ vợ chồng theo đó hai người không còn chung sống, ăn ở với nhau, nhưng vẫn chưa ly hôn. Vợ chồng thường tự thỏa thuận với nhau để sống
**Định đề Bertrand** là một định lý phát biểu rằng với bất kỳ số nguyên n > 3, luôn tồn tại ít nhất một số nguyên tố p sao cho :n < p < 2n
nhỏ|Starfire Optical Range - three lasers into space Một **vũ khí năng lượng định hướng** (**Directional Energy Weapon**) là một vũ khí tầm xa gây thiệt hại cho mục tiêu của nó bằng tập trung
[[Tập tin:Logarithmic scale.svg|thumb|upright=1.5|right| Thang đo lôgarit có thể biểu hiện được quan hệ về số lượng giữa nhiều số khác nhau.]] Đây là danh sách các số dương lớn theo bậc từ thấp đến cao
**Chủ nghĩa vô thần**, **thuyết vô thần** hay **vô thần luận**, theo nghĩa rộng nhất, là sự "thiếu vắng" niềm tin vào sự tồn tại của thần linh. Theo nghĩa hẹp hơn, chủ nghĩa vô
**Lý Chấn Phiên**, thường được biết đến với nghệ danh **Lý Tiểu Long** (tiếng Trung: 李小龍, tiếng Anh: _Bruce Lee,_ 27 tháng 11 năm 1940 – 20 tháng 7 năm 1973), là một cố võ
nhỏ|Lý thuyết biểu diễn nghiên cứu cách các cấu trúc đại số "biến đổi" các đối tượng toán học. Ví dụ đơn giản nhất là cách [[Nhóm nhị diện|nhóm đối xứng của các đa giác
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Định giá chuyển nhượng** (hoặc thường được gọi một cách chưa chính xác là **chuyển giá**) trong thuế và kế toán đề cập đến các quy tắc và phương pháp xác định mức giá cho
Lưu ý: Danh sách **thuật ngữ lý thuyết đồ thị** này chỉ là điểm khởi đầu cho những người mới nhập môn làm quen với một số thuật ngữ và khái niệm cơ bản. Bài
nhỏ|240x240px| Hằng số toán học [[Pi| là một số vô tỉ được thể hiện nhiều trong văn hóa đại chúng. ]] phải|nhỏ|240x240px| Số [[Căn bậc hai của 2| là số vô tỉ ]] Trong toán
thumb|upright=1.35|right|alt=Bản đồ toàn cầu về sự tăng nhiệt độ nước biển từ 0,5 đến 300 độ Celsius; nhiệt độ đất liền tăng từ 10000 đến 20000 độ Celsius; và nhiệt độ vùng Bắc cực tăng
nhỏ|phải|Một người vô gia cư và say xỉn ở [[Việt Nam]] nhỏ|Một người đàn ông vô gia cư ở [[Paris.]] **Vô gia cư** là một trạng thái phản ánh điều kiện và tính chất xã
nhỏ|Gói thịt lợn thái hạt lựu này cho biết 'hiển thị cho đến' ngày 7 tháng 5 và 'sử dụng vào ngày 8 tháng 5 **Thời hạn sử dụng** là khoảng thời gian mà một
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
**Hậu chấn tâm lý** hay **rối loạn căng thẳng sau sang chấn/chấn thương** (tiếng Anh: **_p**ost-**t**raumatic **s**tress **d**isorder_ – PTSD) là một rối loạn tâm thần có thể phát triển sau khi một người tiếp
**Vợ** (chữ Nôm: 𡞕; tiếng Anh: _Wife_), theo chữ Hán là **Thê tử** (妻子) hoặc **Phụ** (婦), là người phụ nữ có vai trò hợp pháp trong một cuộc hôn nhân. Danh từ này vẫn
**Lý thuyết về ràng buộc** (TOC) là một mô hình quản lý mà quan sát bất kỳ hệ thống quản lý nào bị giới hạn trong việc đạt được nhiều mục tiêu hơn bởi một
**_Vợ ba_** hay **_Người vợ ba_** (tiếng Anh: **_The Third Wife_**) là một bộ phim cổ trang lịch sử tâm lý xã hội năm 2018 của đạo diễn Ash Mayfair (Nguyễn Phương Anh) và nhà
thumb|upright|[[Wilhelm Röntgen (1845–1923), người đầu tiên nhận giải Nobel Vật lý.]] Mặt sau huy chương giải Nobel vật lý **Giải Nobel Vật lý** là giải thưởng hàng năm do Viện Hàn lâm Khoa học Hoàng
**Chủ nghĩa vô trị** hay **chủ nghĩa vô chính phủ** là một trường phái triết học và phong trào chính trị chủ trương hoài nghi bất cứ sự hợp thức hóa nào về chính quyền,
thumb|right|Một [[sơ đồ Venn mô phỏng phép giao của hai tập hợp.]] **Lý thuyết tập hợp** (tiếng Anh: _set theory_) là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng
nhỏ|Một dàn khoan **khí thiên nhiên** ở [[Texas, Hoa Kỳ.]] **Khí thiên nhiên** (còn gọi là **khí gas, khí ga, khí đốt** - từ chữ _gaz_ trong tiếng Pháp) là hỗn hợp chất khí cháy
**Giải vô địch bóng đá thế giới 2022** (hay **Cúp bóng đá thế giới 2022**, , ) là lần thứ 22 của Giải vô địch bóng đá thế giới, diễn ra tại Qatar từ ngày