✨Nguyên tử
|}
Nguyên tử là đơn vị cơ bản của vật chất chứa một hạt nhân ở trung tâm bao quanh bởi đám mây điện tích âm các electron (âm điện tử). Hạt nhân nguyên tử là dạng gắn kết hỗn hợp giữa các proton (dương điện tử) mang điện tích dương và các neutron (trung hòa tử) trung hòa điện (ngoại trừ trường hợp của nguyên tử Hydrogen, với hạt nhân ổn định chỉ chứa một proton duy nhất không có neutron). Electron của nguyên tử liên kết với hạt nhân bởi tương tác điện từ và tuân theo các nguyên lý của cơ học lượng tử. Tương tự như vậy, nhóm các nguyên tử liên kết với nhau bởi liên kết hóa học dựa trên cùng một tương tác này, và tạo nên phân tử. Một nguyên tử chứa số hạt electron bằng số hạt proton thì trung hòa về điện tích, trong khi số electron nếu nhiều hoặc ít hơn thì nó mang điện tích âm hoặc dương và gọi là ion. Nguyên tử được phân loại tuân theo số proton và neutron trong hạt nhân của nó: số proton xác định lên nguyên tố hóa học, và số neutron xác định đồng vị của nguyên tố đó. với tổng khối lượng proton xấp xỉ bằng tổng khối lượng neutron. Mỗi nguyên tố có ít nhất một đồng vị với hạt nhân không ổn định có thể trải qua quá trình phân rã phóng xạ. Quá trình này dẫn đến biến đổi hạt nhân làm thay đổi số proton hoặc neutron trong hạt nhân nguyên tử.
Từ nguyên tử trong tiếng Việt bắt nguồn từ tiếng Hán gốc Nhật 原子 (bính âm: yuánzǐ, tiếng Nhật: genshi). Với trong nguyên thủy và trong phân tử.
Lịch sử
Nguyên tử luận
Khái niệm về vật chất là tổ hợp của những đơn vị rời rạc và không thể chia nhỏ hơn đã xuất hiện từ nhiều thiên niên kỷ, nhưng những khái niệm này thường là những lập luận triết học và trừu tượng hơn là dựa trên những quan sát thực nghiệm. Bản chất của nguyên tử trong triết học thay đổi theo thời gian giữa nhiều nền văn minh và trường phái cổ đại, đa số có yếu tố tinh thần siêu hình học. Tuy vậy, khái niệm cơ bản về nguyên tử được các nhà khoa học hàng nghìn năm sau chấp nhận bởi vì nó giải thích một cách đơn giản một số khám phá mới trong lĩnh vực hóa học.
[[Democritos (khoảng 460 - 370 TCN)]] Các nhà triết học cổ đại Hy Lạp và Ấn Độ đã nhắc tới khái niệm nguyên tử. Ở Ấn Độ, những trường phái Ājīvika, Jain, và Cārvāka bàn về nguyên tử luận bắt đầu từ thế kỷ thứ 6 trước Công nguyên. Hệ thống tư tưởng Nyaya và Vaisheshika sau đó phát triển thuyết về nguyên tử khi đề ra cách các nguyên tử kết hợp lại thành thực thể phức tạp hơn. Ở phương Tây, nguyên tử luận được nhắc đến từ thế kỷ 5 TCN bởi Leucippus, và người học trò của Democritos đã tiếp nối và hệ thống hóa lý luận. Khoảng giai đoạn 450 TCN, Democritos đưa ra thuật ngữ atomos (), có nghĩa là "không thể cắt được" hay "hạt vô hình nhỏ nhất của vật chất". Mặc dù các khái niệm này của các triết gia Ấn Độ và Hy Lạp cổ đại thuần túy dựa vào mặt tinh thần, khoa học hiện đại đã bảo lưu thuật ngữ do Democritos đưa ra.
Lý thuyết về những hạt rất nhỏ (Corpuscularianism) do nhà giả kim Geber nêu ra từ thế kỷ XIII, đôi khi có người cho là bởi Paul từ Taranto nêu ra, đó là mọi vật thể chứa bên trong và những hạt hoặc những tiểu thể rất nhỏ. Chủ nghĩa này giống với nguyên tử luận, ngoại trừ nguyên từ được giả thiết là hạt vô hình, và những hạt về nguyên lý có thể phân chia được. Theo lý thuyết này, ví dụ, người ta cho rằng thủy ngân có thể thấm vào kim loại và làm thay đổi cấu trúc bên trong của nó.
Một dòng bổ sung lý luận hỗ trợ lý thuyết hạt (và do vậy mở rộng thuyết nguyên tử) là vào đầu năm 1827 khi nhà thực vật học Scotland Robert Brown sử dụng kính hiển vi để quan sát các hạt bụi trôi nổi trên mặt nước và ông nhận thấy chúng di chuyển zic-zac—một hiện tượng ngày nay gọi là "chuyển động Brown". Năm 1877 J. Desaulx đề xuất hiện tượng này có nguyên nhân từ chuyển động nhiệt của các phân tử nước, và tới tận năm 1905 nhà vật lý người Đức Albert Einstein mới nêu ra phân tích toán lý đầu tiên về chuyển động này.
Đối với 80 nguyên tố hóa học, mỗi nguyên tố có ít nhất một đồng vị bền tồn tại. Như một quy tắc, chỉ có một số nhất định đồng vị bền cho mỗi nguyên tố, trung bình khoảng 3,2 đồng vị bền trên một nguyên tố. 26 nguyên tố chỉ có duy nhất một đồng vị ổn định, trong khi nguyên tố có nhiều đồng vị bền nhất đã được xác nhận đó là thiếc với 10 đồng vị bền. Nguyên tố 43, 61, 83 và mọi nguyên tố có nguyên tử số cao hơn đều không có đồng vị bền.
Tính ổn định của đồng vị bị ảnh hưởng bởi tỉ số của proton trên neutron, và cũng bởi sự có mặt của những "số thần kỳ" xác định của neutron hay proton mà xuất hiện làm đầy hoặc gần với lớp vỏ lượng tử trong mô hình cấu trúc hạt nhân. Những vỏ lượng tử này tương ứng với tập mức năng lượng trong mô hình vỏ hạt nhân; những vỏ được lấp đầy, như vỏ lượng tử của thiếc chứa đầy 50 proton, lại được coi là có tính ổn định kỳ lạ đối với nuclit (hay số thần kỳ là 50). Trong 254 nuclit bền đã biết, chỉ có bốn nuclit bền chứa đồng thời số lẻ proton và số lẻ neutron: hydro-2 (deuteri), lithi-6, boron-10 và nitơ-14. Cũng vậy, chỉ có bốn nuclit xuất hiện trong tự nhiên với đồng thời số lẻ proton và neutron có nửa thời gian sống trên một tỷ năm: kali-40, vanadium-50, lanthanum-138 và tantalum-180m. Đa số các hạt nhân có đồng thời số lẻ proton và neutron đều mất ổn định và nhanh chóng phân rã beta, bởi vì sản phẩm phân rã chứa số chẵn đồng thời proton và neutron, và do vậy liên kết chặt với nhau hơn, do hiệu ứng bắt cặp hạt nhân (theo nguyên lý loại trừ Pauli, một proton có spin lên sẽ có xu hướng bắt cặp với một proton có spin xuống, và tương tự cho neutron, điều này dẫn đến xu hướng có đồng thời số chẵn cả proton và neutron trong hạt nhân).
Hình dạng và kích thước
Nguyên tử không có bề mặt định rõ, do vậy kích thước của nó thường được xác định hình thức bằng thuật ngữ bán kính nguyên tử. Đại lượng này đo khoảng cách mở rộng đám mây electron tính từ hạt nhân. Tuy nhiên, cách giả sử này không chỉ đúng cho nguyên tử có dạng hình cầu, mà còn đúng cho nguyên tử cô lập trong chân không. Bán kính nguyên tử có thể suy ra từ khoảng cách giữa hai hạt nhân khi hai nguyên tử kết hợp lại theo liên kết hóa học. Bán kính thay đổi phụ thuộc vị trí của nguyên tử trên bảng tuần hoàn, loại liên kết hóa học, số nguyên tử hay ion lân cận với nó (số tọa độ) và tính chất cơ học lượng tử của nó spin.
Khi chịu tác động của trường ngoài, như điện trường và từ trường, hình dạng của nguyên tử có thể bị bẻ lệch khỏi hình cầu. Sự lệch này phụ thuộc vào cường độ của trường và kiểu orbital của lớp vỏ electron ngoài cùng, như được chỉ ra bởi lý thuyết nhóm. Hình cầu biến dạng có thể xuất hiện trong cấu trúc tinh thể ở đây khi chịu điện trường mẫu tinh thể có xuất hiện những đối xứng bậc thấp trong dàn tinh thể. Một cara kim cương với khối lượng chứa khoảng (1022) nguyên tử cacbon. Nếu một quả táo phóng to bằng đường kính Trái Đất, thì một nguyên tử trong quả táo có đường kính xấp xỉ kích cỡ quả táo ban đầu.
Phân rã phóng xạ
Mỗi nguyên tố có một hay nhiều đồng vị mà hạt nhân không bền sẽ tiến tới phân rã phóng xạ, và hạt nhân phát ra hạt nhân khác hoặc bức xạ điện từ. Hiện tượng phóng xạ xảy ra khi bán kính của hạt nhân đủ lớn so với bán kính ảnh hưởng của tương tác mạnh, với phạm vi tác động khoảng 1 fm. và khi một electron chuyển dịch sang mức năng lượng cao hơn thì nó ở vào trạng thái kích thích. Năng lượng của một photon tỷ lệ với tần số của nó, do đó những mức năng lượng xác định này hiện lên thành những dải phân biệt trong phổ điện từ. Mỗi nguyên tố có một phổ đặc trưng phụ thuộc vào điện tích hạt nhân, cấu hình electron, tương tác điện từ giữa các electron và bởi những nhân tố khác. (còn lại là vật chất tối và năng lượng tối), với mật độ trung bình khoảng 0,25 nguyên tử/m³.
Các dạng hiếm và trên lý thuyết
phải|Ảnh mô phỏng 3 chiều về lý thuyết đảo bền xung quanh Z=118 và N=178.
Nguyên tố siêu nặng
Các đồng vị với số nguyên tử lớn hơn của chì (82) có tính phóng xạ, các nhà vật lý đã đề xuất về sự tồn tại của "đảo bền" cho những nguyên tố có số nguyên tử lớn hơn 103. Những nguyên tố siêu nặng này có hạt nhân tương đối ổn định trong quá trình phân rã. Ứng cử viên cho nguyên tử siêu nặng ổn định đó là unbihexium, có 126 proton và 184 neutron.
Vật chất ngoại lai
Mỗi hạt vật chất đều có dạng tương ứng trên lý thuyết đó là hạt phản vật chất với điện tích trái dấu. Hay hạt positron điện tích dương là phản hạt của electron và phản proton điện tích âm là phản hạt của proton. Khi vật chất và phản vật chất tương ứng gặp nhau chúng lập tức bị hủy thành các tia gamma. Bởi vì lý do này, cùng với sự mất cân bằng giữa lượng vật chất và phản vật chất trong vũ trụ, phản vật chất rất hiếm thấy trong vũ trụ. (Mặc dù nguyên nhân của sự mất cân bằng trên quy mô Vũ trụ chưa được hiểu đầy đủ, một số lý thuyết đã đề xuất ra về sự vi phạm đối xứng CPT trong thời điểm của Vụ nổ lớn.) Và hiện nay chưa có nguyên tử phản vật chất nào tìm thấy tồn tại trong tự nhiên. Trong phòng thí nghiệm, năm 1996, trung tâm nghiên cứu hạt hạ nguyên tử CERN ở Genève đã lần đầu tiên tạo ra được phản hydro.
Các nhà vật lý cũng tạo ra được những nguyên tử ngoại lai khác bằng cách thay hạt proton, neutron hay electron bằng hạt khác có cùng điện tích. Ví dụ, trong nguyên tử hydro hạt electron được thay thế bằng lepton nặng hơn là muon, tạo ra nguyên tử muonic. Nguyên tử lạ là một trong những mẫu để các nhà vật lý kiểm chứng các tiên đoán cơ bản của vật lý.